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We study the gravitational collapse of axion dark matter in null coordinates, assuming spherical 
symmetry. Compared with previous studies, we use a simpler numerical scheme which can run, for 
relevant parameters, in a few minutes or less on a desktop computer. We use it to accurately determine 
the domains of parameter space in which the axion field forms a black hole, an axion star or a relativistic 
Bosenova.
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1. Introduction

Amongst the possible dark matter candidates, a coherent scalar 
field with very low mass is an enticing possibility. The idea orig-
inated with the QCD axion [1], but the concept has since been 
extended to a class of axion-like particles (ALP’s) with ultra-light 
masses [2]. In ALP scenarios, the dark matter forms gravitation-
ally bound objects which may form into galaxy cores [3], or for 
larger masses into axion mini-clusters [4–6]. These objects are of-
ten stable only for a particular mass range, leaving the possibility 
of detectable cosmological signatures from the axion bound struc-
tures or from the remnants of their collapse [3,7].

ALP’s are characterised by their mass m and decay constant (or 
symmetry breaking scale) f . Coherent ALP dark matter scenarios 
envision the dark matter energy density in the form of large-scale 
coherent axion oscillations of frequency ∼ m, with density param-
eter [1,7]

�ALP ∼ 0.1

(
f

1017 GeV

)2 ( m

10−22 eV

)1/2
, (1)

although this is rather dependent on initial conditions. Spatial gra-
dients in the oscillating axion field induce “quantum” pressure 
forces which are capable of supporting structures on the Kpc scale 
for axion masses around m ∼ 10−22 eV, or galaxy Halo scales for 
m ∼ 10−24 eV [2].

We follow the recent trend of referring to stable axion struc-
tures as axion stars (though the term Bose star is also frequently 
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used in this context). So far three distinct scenarios of gravitational 
collapse for APL’s have been identified [8,9]: they can settle down 
quietly to an axion star; they can radiate away energy in bursts of 
relativistic axions or they can collapse to a black hole. The second 
outcome is a relativistic analogue of the Bosenova phenomena in 
cold-atom physics [10]. Like the cold atoms in a Bosenova, the ax-
ions have an attractive self-interaction force which can overcome 
the quantum pressure. We will use the term Bosenova in this pa-
per to refer to the axion collapse and radiation phenomenon.

The fate of an axion clump can be represented on phase dia-
grams labelled by parameters describing the axion properties and 
the initial conditions. Recently, Helfer et al. [9] have produced a 
phase diagram for spherically symmetric collapse with axion decay 
constant f and the initial mass of the axion clump, and they have 
speculated that there is a tricritical point joining phase boundaries 
between the three outcomes. The aim of this paper is to provide 
convincing numerical evidence for the tricritical point using a par-
ticularly amenable form of the field equations, and to determine 
the parameter values accurately at the phase boundaries.

We use the null-coordinate integration schemes introduced into 
spherically symmetric gravitational collapse by Goldwirth and Pi-
ran [11]. The null techniques are particularly efficient because the 
coordinate grid flows inwards with the collapsing matter. For ex-
ample, the null methods can reproduce the universal scaling phe-
nomena in massless scalar collapse [12], which otherwise is only 
possible with less efficient mesh refinement techniques [13].

Throughout this work, we use units in which the reduced 
Planck constant h̄ and velocity of light c are equal to unity. The 
reduced Planck mass Mp = (8πG)−1/2, where G is Newton’s con-
stant.
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2. Model and field equations

We take the generic axion potential V , which is typical of the 
potentials which represent axion dark matter [14–16]:

V (φ) = m2 f 2
(

1 − cos

(
φ

f

))
. (2)

The parameters m and f are related by (1) if the cosmological dark 
matter density is in the form of coherent axion oscillations, but 
we will generally take m and f as free parameters. The Lagrangian 
density of the axion field is

Lφ = − gμν

2
(∂μφ)(∂νφ) − V (φ) , (3)

where gμν is the metric.
The focus of this paper is on spherically-symmetric collapse. 

Following [11,12,17], we use a very efficient integration scheme 
obtained by introducing the retarded time coordinate u and radial 
coordinate r, with metric

ds2 = −g(u, r)ḡ(u, r)du2 − 2g(u, r)dudr + r2d�2. (4)

As usual, d�2 is the metric on the unit sphere, and we suppose 
that g, ̄g are two smooth functions. Without loss of generality, up 
to a redefinition of u, we can impose boundary conditions at the 
origin, ḡ(u, 0) = 1. Imposing that there is no conical singularity at 
r = 0 then implies that g(u, 0) = 1 [11].

We follow the conventions of [11,12] and introduce the nota-
tion h̄ for the scalar field φ. Radial derivatives of h̄ are used to 
define an auxiliary field h. One can show that the Einstein equa-
tions are fully equivalent to a system of first order equations:

∂uh − ḡ

2
∂rh = h − h̄

2r

[(
1 − 8πGr2 V

(
h̄
))

g − ḡ
] − g

2
rV ′(h̄

)
, (5)

∂r ln(g) = 4πG

r

(
h − h̄

)2
, (6)

∂r (r ḡ) = (
1 − 8πGr2 V

(
h̄
))

g, (7)

∂r
(
rh̄

) = h. (8)

The first of these equations is a form of the Klein–Gordon equation 
which can be integrated using the method of characteristics. This 
is the only true evolution equation in the system, the other three 
equations are geometrical constraints.

Starting from the initial data surface u = 0, we label the ingoing 
radial null geodesics by a coordinate v . The ingoing null geodesics 
for the metric Eq. (5) satisfy the characteristic equation for (5),

∂ur|v = − ḡ

2
. (9)

Changing to null coordinates, so that h(u, r) becomes h(u, v), gives 
the evolution along the characteristic surfaces of constant v ,

∂uh = h − h̄

2r

[(
1 − 8πGr2 V

(
h̄
))

g − ḡ
] − g

2
rV ′(h̄

)
. (10)

In order to solve these field equations, we have adapted the nu-
merical procedure from Refs. [11,18,12]. Starting from given initial 
data for h̄ and r at u = 0, we first compute h(0, v), g(0, v), and 
ḡ(0, v) using (6)–(8). We evolve r and h in the u direction using 
Equations (9) and (10), discarding points for which r becomes neg-
ative. At each step, the constraints (6)–(8) are solved by integrating 
in the v direction.

Evolution methods based on the 3+1 space and time coor-
dinates solve their constraints on the initial time hypersurface, 

usually as a boundary value problem, and can be subject to con-
straint violation at later times. This is not an issue with the null 
coordinate formalism. The method only requires us to solve the or-
dinary differential equations, (10) and (9), with integrations over v
at each time step. As a result, the method is remarkably accurate, 
fast and reliable.

When a black hole forms, it is possible to follow the evolution 
up to the null surface u = uT which contains a marginally trapped 
surface at r = rT . We define the final black hole mass MH as the 
Bondi mass [19,20],

MH = lim
u→uT

lim
v→∞

r

2G

(
1 − ḡ

g

)
, (11)

since this is appropriate for null coordinate systems. A Schwarz-
schild black hole metric with mass M , for example, has g = 1, 
ḡ = 1 − 2GM/r and MH = M . At the marginally trapped surface 
g → ∞, and the computational grid has to be compressed to 
counter the growth in the right hand side of (10). In practice, the 
integration is stopped when ḡ/g reaches a predetermined value. 
The Bondi mass is calculated at the final value of u and with v at 
the extreme edge of the coordinate grid.

Removing the limits from (11) gives a local quantity MB (u, v)

which evolves according to

∂u MB = −2πr2
(

2

g

(
∂uh̄

)2 + ḡV (h̄)

)
. (12)

When g , ḡ , and V are positive, then ∂u MB ≤ 0. We will use 
−∂u MB as a measure of the energy flux from the collapsing star. 
Any increase of M along in the ingoing null direction indicates (at 
least if V remains positive) an artefact from the numerical integra-
tion, and the corresponding runs are discarded. We can also use 
(12) to put bounds on the error in the black hole mass from trun-
cating the integration before the trapped surface at u = uT . This 
gives better control of the black hole mass than we would have 
using the mass at the trapped surface, rT /2G , which was used in 
previous work.

3. Numerical results

We preface the full analysis with some results on the collapse 
of a massive, real, scalar field without self-interaction. Depending 
on initial conditions, the system can collapse to a black hole or a 
stable oscillaton, i.e. an oscillating field configuration that main-
tains its radial profile [6,5]. The phase diagram for relativistic col-
lapse in terms of mass and radius was obtained semi-analytically 
in Ref. [21]. The fully relativistic collapse of a massive scalar field 
was studied in some detail using null coordinates in Ref. [17] and 
using a 3+1 approach in Ref. [22].

We use the null coordinate approach to plot the phase dia-
gram in terms of the axion mass m, the initial radius R and Bondi 
mass MB . The choice of initial density profile is somewhat arbi-
trary, but we choose to work with a Gaussian profile which has 
been used previously for Bose stars [23]. The scalar field is oscilla-
tory in time, and when projected on to the light-cone in flat space,

h̄i(r) =
√

2M

π3/2m2 R3
e−r2/(2R2) cos(mr). (13)

The pre-factor has been chosen so that the mass of the star is M
in the non-relativistic limit Rm � 1. The relationship between the 
radius and the ingoing null coordinate on the initial surface can 
be specified freely, but the uniform choice r = 2v will be used 
for simplicity. Initial conditions on the remaining fields are de-
termined by the constraints (6)–(8), which ensure that we have 
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