In the usual approach in the area of quantum games [5], a classical game is defined, or given, at the start and its quantum version is developed afterwards. The usual reasonable requirement being that the classical mixed-strategy game can be recovered from the quantum game. One then studies whether the quantum game offers any non-classical outcome(s). In this paper, the players' strategies in the quantum game remain classical whereas the new quantum, or non-classical, outcome(s) of the game emerge from the peculiar quantum probabilities relevant to the quantum system that two players share to play the game. In contrast to the usual approach in quantum games, in which the players' strategies are unitary transformations, here we consider a particular classical strategy pair and then enquire about the set of games for which that strategy pair can exist as a Nash equilibrium (NE) [6-8]. In particular, for a given strategy pair, we investigate whether there are such games for which that strategy pair can exist as a NE only when the corresponding Bell's inequality is violated by the quantum probabilities relevant to the shared quantum system.

We consider two-player games that can be played using the setting of generalized Einstein-Podolsky-Rosen (EPR) experiments [9,14,19]. As is known, in this setting a probabilistic version of Bell's inequality can be obtained [15-19]. We consider particular strategies and find the sets of games for which the strategies can exist as a NE only when Bell's inequality is violated. By identifying such games, we show that there exist strategic outcomes that can only be realized when the game is played quantum mechanically and also only when the corresponding Bell's inequality is violated.

The connection between Bell's inequality and the NE was originally reported in Ref. [20]. However, the Ref. [20] did not use an EPR setting. In the present paper, we show that the mentioned connection becomes explicitly direct by using an EPR setting in playing a quantum game.

2. Two-player quantum games using the EPR experiment setting

The EPR setting for playing quantum games was introduced in Ref. [24] and was further investigated in Refs. [25-32]. The Refs. [26-28,30,33-35] investigate using the setting of generalized EPR experiments [19] for playing quantum games. This setting permits consideration of a probabilistic version of the corresponding Bell's inequality, which allows construction of quantum games without referring to the mathematical formalism of quantum mechanics including Hilbert space, unitary transformations, entangling operations, and quantum measurements [9]. The relationship between the NE and aspects of Bell's inequality have been indicated in Refs. [21-23]. The present paper's contribution consists of bringing into focus this relationship and, in particular, finding the specific games for which this relationship can be explicitly defined. Moreover, in order to achieve this the present paper uses EPR setting and the probabilistic version of Bell's inequality.

In the setting of the generalized EPR experiment, Alice and Bob are spatially separated and are unable to communicate with each other. In an individual run, both receive one half of a pair of particles originating from a common source. In the same run of the experiment, both players choose one from two given (pure) strategies. These strategies are the two directions in space along which spin or polarization measurements can be made. We denote these directions to be S_{1}, S_{2} for Alice and $S_{1}^{\prime}, S_{2}^{\prime}$ for Bob. Each measurement generates +1 or -1 as the outcome. Experimental results are recorded for a large number of individual runs of the experiment. Payoffs are then awarded that depend on the directions the players choose over many runs (defining the players' strategies), the matrix of the game they play, and the statistics of the measurement outcomes. For instance, we denote $\operatorname{Pr}\left(+1,+1 ; S_{1}, S_{1}^{\prime}\right)$ as the probability of both Alice and Bob obtaining +1 when Alice selects
the direction S_{1} whereas Bob selects the direction S_{1}^{\prime}. We write ϵ_{1} for the probability $\operatorname{Pr}\left(+1,+1 ; S_{1}, S_{1}^{\prime}\right)$ and ϵ_{8} for the probability $\operatorname{Pr}\left(-1,-1 ; S_{1}, S_{2}^{\prime}\right)$ and likewise one can then write down the relevant probabilities as

Being normalized, EPR probabilities ϵ_{i} satisfy the relations
$\Sigma_{i=1}^{4} \epsilon_{i}=1, \Sigma_{i=5}^{8} \epsilon_{i}=1, \Sigma_{i=9}^{12} \epsilon_{i}=1, \Sigma_{i=13}^{16} \epsilon_{i}=1$.
Consider in (1), for instance, the case when Alice plays her strategy S_{2} and Bob plays his strategy S_{1}^{\prime}. The two arms of the SternGerlach apparatus are rotated along these two directions and the quantum measurement is performed. According to the above table, the probability that both experimental outcomes are -1 is then ϵ_{12}. Similarly, the probability that the observer 1's experimental outcome is +1 and observer 2's experimental outcome is -1 is given by ϵ_{10}. The other entries in (1) can similarly be explained. In the present paper, the EPR setting is enforced and that the players can only choose between two directions.

We now consider a game between two players Alice and Bob, which is defined by the real numbers a_{i} and b_{i} for $1 \leq i \leq 16$, and is given by

	Bob			
S_{1}	$\begin{gathered} S_{1}^{\prime} \\ \left(a_{1}, b_{1}\right) \\ \left(a_{3}, b_{3}\right) \end{gathered}$	$\begin{aligned} & \left(a_{2}, b_{2}\right) \\ & \left(a_{4}, b_{4}\right) \end{aligned}$	$\begin{aligned} & \left(a_{5}, b_{5}\right) \\ & \left(a_{7}, b_{7}\right) \end{aligned}$	$\begin{gathered} S_{2}^{\prime} \\ \left(a_{6}, b_{6}\right) \\ \left(a_{8}, b_{8}\right) \end{gathered}$
S_{2}	$\begin{gathered} \left(a_{9}, b_{9}\right) \\ \left(a_{11}, b_{11}\right) \end{gathered}$	$\begin{aligned} & \left(a_{10}, b_{10}\right) \\ & \left(a_{12}, b_{12}\right) \end{aligned}$	$\begin{aligned} & \left(a_{13}, b_{13}\right) \\ & \left(a_{15}, b_{15}\right) \end{aligned}$	$\left(a_{14}, b_{14}\right)$ $\left(a_{16}, b_{16}\right)$

For this game, we now define the players' pure strategy payoff relations as
$\Pi_{A, B}\left(S_{1}, S_{1}^{\prime}\right)=\Sigma_{i=1}^{4}\left(a_{i}, b_{i}\right) \epsilon_{i}, \Pi_{A, B}\left(S_{1}, S_{2}^{\prime}\right)=\Sigma_{i=5}^{8}\left(a_{i}, b_{i}\right) \epsilon_{i}$,
$\Pi_{A, B}\left(S_{2}, S_{1}^{\prime}\right)=\Sigma_{i=9}^{12}\left(a_{i}, b_{i}\right) \epsilon_{i}, \Pi_{A, B}\left(S_{2}, S_{2}^{\prime}\right)=\Sigma_{i=13}^{16}\left(a_{i}, b_{i}\right) \epsilon_{i}$,
where $\Pi_{A}\left(S_{1}, S_{2}^{\prime}\right)$, for example, is Alice's payoff when she plays S_{1} and Bob plays S_{2}^{\prime}.

It can be seen that in the way it is defined, the game is inherently probabilistic. That is, in (3) the players' payoffs even for their pure strategies assume an underlying probability distribution as given by (1). Now, we can also define a mixed-strategy version of this game as follows. Consider Alice playing the strategy S_{1} with probability p and the strategy S_{2} with probability $(1-p)$ whereas Bob playing the strategy S_{1}^{\prime} with probability q and the strategy S_{2}^{\prime} with probability $(1-q)$. Using (3), (4) the players' mixed strategy payoff relations can then be obtained as

$$
\begin{align*}
& \Pi_{A, B}(p, q) \\
& \quad=\binom{p}{1-p}^{T}\left(\begin{array}{ll}
\Pi_{A, B}\left(S_{1}, S_{1}^{\prime}\right) & \Pi_{A, B}\left(S_{1}, S_{2}^{\prime}\right) \\
\Pi_{A, B}\left(S_{2}, S_{1}^{\prime}\right) & \Pi_{A, B}\left(S_{2}, S_{2}^{\prime}\right)
\end{array}\right)\binom{q}{1-q} . \tag{5}
\end{align*}
$$

https://daneshyari.com/en/article/8948977

Download Persian Version:
https://daneshyari.com/article/8948977

Daneshyari.com

