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The interaction of competing agents is described by classical game theory. It is now well known that this 
can be extended to the quantum domain, where agents obey the rules of quantum mechanics. This is 
of emerging interest for exploring quantum foundations, quantum protocols, quantum auctions, quantum 
cryptography, and the dynamics of quantum cryptocurrency, for example. In this paper, we investigate 
two-player games in which a strategy pair can exist as a Nash equilibrium when the games obey the 
rules of quantum mechanics. Using a generalized Einstein–Podolsky–Rosen (EPR) setting for two-player 
quantum games, and considering a particular strategy pair, we identify sets of games for which the pair 
can exist as a Nash equilibrium only when Bell’s inequality is violated. We thus determine specific games 
for which the Nash inequality becomes equivalent to Bell’s inequality for the considered strategy pair.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

A quantum game [1–5] describes the strategic interaction 
among a set of players sharing quantum states. Players’ strate-
gic choices, or strategies [6–8], are local unitary transformations 
on the quantum state. The state evolves unitarily and finally the 
players’ payoffs, or utilities, are obtained by measuring the en-
tangled state. It turns out that under certain situations sharing of 
an entangled quantum state can put the players in an advanta-
geous position and more efficient outcomes of the game can then 
emerge. For readers not familiar with the formalism of quantum 
theory [9], sharing an entangled state can be considered equiva-
lent to the situation in which the players have (shared) access to 
a ‘quantum system’ having some intrinsically non-classical aspects. 
A quantum game would then involve a strategic manoeuvring of 
the shared quantum system in which different and perhaps more 
efficient outcome(s) of the game can emerge due to non-classical 
aspect(s) of the shared system.

Now, it is well known that non-classical, and thus apparently 
strange, aspects of a shared quantum system can be expressed as 
constraints on probabilities relevant to the shared system. Usually 
expressed as constraints in correlations, the famous Bell’s inequal-
ity [9–14] can be re-expressed as constraints on the relevant joint 
probability and its marginals [15–18]. Essentially, Bell’s inequality 
emerges as being the necessary and sufficient condition requiring 

E-mail address: mr.azhariqbal@gmail.com (A. Iqbal).

a joint probability distribution to exist given a set of marginals. It 
is well known that Bell’s inequality can be violated by a set of 
quantum mechanical probabilities—the probabilities that are ob-
tained by the quantum probability rule. This turns out to be the 
case even though the quantum probabilities are normalized as the 
classical probabilities are. This is because for a set of marginal 
(quantum) probabilities that are obtained via the quantum prob-
ability rule, the corresponding joint probability distribution may 
not exist. The possibility to express truly non-classical aspects of a 
quantum system in only probabilistic terms [19] has led to sugges-
tions for schemes of quantum games [26–28,30,33–35] that do not 
refer to quantum states, unitary transformations, and/or the quan-
tum measurement.

In a classical game allowing mixed strategies, the players’ 
strategies are convex linear combinations, with real coefficients, 
of their pure strategies [8]. Players’ strategies in a quantum game 
[2,3], however, are unitary transformations and thus belong to 
much larger strategy spaces. This led to the arguments [36] that 
quantum games can perhaps be viewed as extended classical 
games. In order to obtain an improved comparison between clas-
sical and quantum games, it was suggested [24] that the players’ 
strategy sets need to be identical. This has motivated proposals 
[33–35] of quantum games in which players’ strategies are clas-
sical, as being convex linear combinations (with real coefficients) 
of the classical strategies, and the quantum game emerges from 
the non-classical aspects of a shared probabilistic physical system—
as expressed by the constraints on relevant probabilities and their 
marginals [15–18].

https://doi.org/10.1016/j.physleta.2018.08.011
0375-9601/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.physleta.2018.08.011
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:mr.azhariqbal@gmail.com
https://doi.org/10.1016/j.physleta.2018.08.011


U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

JID:PLA AID:25263 /SCO Doctopic: Quantum physics [m5G; v1.241; Prn:16/08/2018; 8:50] P.2 (1-6)

2 A. Iqbal et al. / Physics Letters A ••• (••••) •••–•••

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

In the usual approach in the area of quantum games [5], a clas-
sical game is defined, or given, at the start and its quantum ver-
sion is developed afterwards. The usual reasonable requirement 
being that the classical mixed-strategy game can be recovered 
from the quantum game. One then studies whether the quantum 
game offers any non-classical outcome(s). In this paper, the play-
ers’ strategies in the quantum game remain classical whereas the 
new quantum, or non-classical, outcome(s) of the game emerge 
from the peculiar quantum probabilities relevant to the quantum 
system that two players share to play the game. In contrast to the 
usual approach in quantum games, in which the players’ strategies 
are unitary transformations, here we consider a particular classical 
strategy pair and then enquire about the set of games for which 
that strategy pair can exist as a Nash equilibrium (NE) [6–8]. In 
particular, for a given strategy pair, we investigate whether there 
are such games for which that strategy pair can exist as a NE only 
when the corresponding Bell’s inequality is violated by the quan-
tum probabilities relevant to the shared quantum system.

We consider two-player games that can be played using the 
setting of generalized Einstein–Podolsky–Rosen (EPR) experiments 
[9,14,19]. As is known, in this setting a probabilistic version of 
Bell’s inequality can be obtained [15–19]. We consider particular 
strategies and find the sets of games for which the strategies can 
exist as a NE only when Bell’s inequality is violated. By identifying 
such games, we show that there exist strategic outcomes that can 
only be realized when the game is played quantum mechanically 
and also only when the corresponding Bell’s inequality is violated.

The connection between Bell’s inequality and the NE was orig-
inally reported in Ref. [20]. However, the Ref. [20] did not use an 
EPR setting. In the present paper, we show that the mentioned 
connection becomes explicitly direct by using an EPR setting in 
playing a quantum game.

2. Two-player quantum games using the EPR experiment setting

The EPR setting for playing quantum games was introduced 
in Ref. [24] and was further investigated in Refs. [25–32]. The 
Refs. [26–28,30,33–35] investigate using the setting of general-
ized EPR experiments [19] for playing quantum games. This setting 
permits consideration of a probabilistic version of the correspond-
ing Bell’s inequality, which allows construction of quantum games 
without referring to the mathematical formalism of quantum me-
chanics including Hilbert space, unitary transformations, entan-
gling operations, and quantum measurements [9]. The relationship 
between the NE and aspects of Bell’s inequality have been indi-
cated in Refs. [21–23]. The present paper’s contribution consists of 
bringing into focus this relationship and, in particular, finding the 
specific games for which this relationship can be explicitly defined. 
Moreover, in order to achieve this the present paper uses EPR set-
ting and the probabilistic version of Bell’s inequality.

In the setting of the generalized EPR experiment, Alice and Bob 
are spatially separated and are unable to communicate with each 
other. In an individual run, both receive one half of a pair of par-
ticles originating from a common source. In the same run of the 
experiment, both players choose one from two given (pure) strate-
gies. These strategies are the two directions in space along which 
spin or polarization measurements can be made. We denote these 
directions to be S1, S2 for Alice and S ′

1, S ′
2 for Bob. Each measure-

ment generates +1 or −1 as the outcome. Experimental results are 
recorded for a large number of individual runs of the experiment. 
Payoffs are then awarded that depend on the directions the play-
ers choose over many runs (defining the players’ strategies), the 
matrix of the game they play, and the statistics of the measure-
ment outcomes. For instance, we denote Pr(+1, +1; S1, S ′

1) as the 
probability of both Alice and Bob obtaining +1 when Alice selects 

the direction S1 whereas Bob selects the direction S ′
1. We write 

ε1 for the probability Pr(+1, +1; S1, S ′
1) and ε8 for the probabil-

ity Pr(−1, −1; S1, S ′
2) and likewise one can then write down the 

relevant probabilities as

Alice

S1
+1
−1

S2
+1
−1

Bob
S ′

1
+1 −1

S ′
2

+1 −1
ε1 ε2
ε3 ε4

ε5 ε6
ε7 ε8

ε9 ε10
ε11 ε12

ε13 ε14
ε15 ε16

. (1)

Being normalized, EPR probabilities εi satisfy the relations

�4
i=1εi = 1, �8

i=5εi = 1, �12
i=9εi = 1, �16

i=13εi = 1. (2)

Consider in (1), for instance, the case when Alice plays her strategy 
S2 and Bob plays his strategy S ′

1. The two arms of the Stern–
Gerlach apparatus are rotated along these two directions and the 
quantum measurement is performed. According to the above table, 
the probability that both experimental outcomes are −1 is then 
ε12. Similarly, the probability that the observer 1’s experimental 
outcome is +1 and observer 2’s experimental outcome is −1 is 
given by ε10. The other entries in (1) can similarly be explained. In 
the present paper, the EPR setting is enforced and that the players 
can only choose between two directions.

We now consider a game between two players Alice and Bob, 
which is defined by the real numbers ai and bi for 1 ≤ i ≤ 16, and 
is given by

Alice

S1

S2

Bob
S ′

1 S ′
2

(a1,b1) (a2,b2)

(a3,b3) (a4,b4)

(a5,b5) (a6,b6)

(a7,b7) (a8,b8)

(a9,b9) (a10,b10)

(a11,b11) (a12,b12)

(a13,b13) (a14,b14)

(a15,b15) (a16,b16)

.

(3)

For this game, we now define the players’ pure strategy payoff re-
lations as

�A,B(S1, S ′
1) = �4

i=1(ai,bi)εi, �A,B(S1, S ′
2) = �8

i=5(ai,bi)εi,

�A,B(S2, S ′
1) = �12

i=9(ai,bi)εi, �A,B(S2, S ′
2) = �16

i=13(ai,bi)εi,

(4)

where �A(S1, S ′
2), for example, is Alice’s payoff when she plays S1

and Bob plays S ′
2.

It can be seen that in the way it is defined, the game is in-
herently probabilistic. That is, in (3) the players’ payoffs even for 
their pure strategies assume an underlying probability distribution 
as given by (1). Now, we can also define a mixed-strategy version 
of this game as follows. Consider Alice playing the strategy S1 with 
probability p and the strategy S2 with probability (1 − p) whereas 
Bob playing the strategy S ′

1 with probability q and the strategy S ′
2

with probability (1 − q). Using (3), (4) the players’ mixed strategy 
payoff relations can then be obtained as

�A,B(p,q)

=
(

p
1 − p

)T (
�A,B(S1, S ′

1) �A,B(S1, S ′
2)

�A,B(S2, S ′
1) �A,B(S2, S ′

2)

)(
q

1 − q

)
. (5)
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