Accepted Manuscript

Expression, purification and characterization of an active C491G variant of ferredoxin sulfite reductase from Synechococcus elongatus PCC 7942

Karim A. Walters, John H. Golbeck

PII: S0005-2728(18)30174-9

DOI: doi:10.1016/j.bbabio.2018.06.014

Reference: BBABIO 47946

To appear in: BBA - Bioenergetics

Received date: 18 January 2018
Revised date: 22 June 2018
Accepted date: 26 June 2018

Please cite this article as: Karim A. Walters, John H. Golbeck, Expression, purification and characterization of an active C491G variant of ferredoxin sulfite reductase from Synechococcus elongatus PCC 7942. Bbabio (2018), doi:10.1016/j.bbabio.2018.06.014

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Expression, purification and characterization of an active C491G variant of ferredoxin sulfite reductase from *Synechococcus elongatus* PCC 7942

Karim A. Walters^a and John H. Golbeck^{a,b,*}

^aDepartment of Biochemistry and Molecular Biology, The Pennsylvania State University,

University Park, Pennsylvania, 16802, United States

^bDepartment of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States

* **Correspondence:** Dr. John H. Golbeck. Phone (814) 865-1163; Fax: (814) 863-7024; Email: jhg5@psu.edu

Running Title: Characterization of a C491G variant of ferredoxin sulfite reductase

Keywords: Sulfite reductase, *Synechococcus elongatus* PCC 7942, siroheme, iron sulfur clusters, redox potential.

Highlights

- Native and $C_{491}G$ variant of ferredoxin sulfite reductase both contains a high spin S = 5/2 siroheme Fe^{3+} and a low spin $S = 1/2 [4Fe-4S]^{2+/1+}$ cluster.
- The redox potential of the $[4\text{Fe-}4\text{S}]^{2+/1+}$ cluster in the $C_{491}G$ variant ferredoxin sulfite reductase is 58 mV more positive than in the native enzyme.
- The $C_{491}G$ variant ferredoxin sulfite reductase shows methyl viologen and ferredoxin 1 activity, albeit at a lower rate than the native enzyme.

Download English Version:

https://daneshyari.com/en/article/8949247

Download Persian Version:

https://daneshyari.com/article/8949247

<u>Daneshyari.com</u>