Relation between the matching number and the second largest distance Laplacian eigenvalue of

Fenglei Tian ${ }^{\text {a,*, }}$, Dein Wong ${ }^{\text {b,1 }}$
${ }^{\text {a }}$ School of Management, Institute of Operations Research, Qufu Normal
University, Rizhao 276826, China
${ }^{\text {b }}$ School of Mathematics, China University of Mining and Technology, Xuzhou 221116, China

A R T I C L E I N F O

Article history:

Received 22 January 2018
Accepted 20 August 2018
Available online 23 August 2018
Submitted by R. Brualdi

MSC:

05C50
15A18

Keywords:

Distance Laplacian matrix
Distance Laplacian eigenvalue
Matching number

Abstract

Let G be a connected simple graph with matching number $m(G)$. The second largest distance Laplacian eigenvalue of G is denoted by $\partial_{2}(G)$. In this paper, we investigate the relation between the matching number and the second largest distance Laplacian eigenvalue of G, establishing the lower bounds of $\partial_{2}(G)$ in terms of $m(G)$. Moreover, all the extremal graphs attaining the lower bounds are completely characterized.

© 2018 Published by Elsevier Inc.

1. Introduction

Let G be a connected simple graph. The distance Laplacian matrix and distance signless Laplacian matrix of G are defined as $\mathcal{L}(G)=\operatorname{diag}(\operatorname{Tr})-\mathcal{D}(G)$ and $\mathcal{Q}(G)=$

[^0]$\operatorname{diag}(\operatorname{Tr})+\mathcal{D}(G)$ respectively, where $\mathcal{D}(G)$ is the distance matrix of G and $\operatorname{diag}(T r)$ is a diagonal matrix of vertex transmissions of G. Since the two matrices were defined by Aouchiche and Hansen in [1], they have been investigated intensively. In particular, many papers (see [2,3,6,8-15]) deal with the largest eigenvalues of the two matrices, which are called distance Laplacian spectral radius and distance signless Laplacian spectral radius, respectively. As a consequence, many families of graphs with minimum (or maximum) distance Laplacian (or distance signless Laplacian) spectral radius are characterized.

However, compared with the largest eigenvalues of the two matrices, the second largest eigenvalues of $\mathcal{L}(G)$ and $\mathcal{Q}(G)$, called the second largest distance Laplacian and distance signless Laplacian eigenvalues respectively, have not been studied extensively. The followings are some known conclusions. For any n-vertex graph G and tree T, Tian et al. [16] proved that the second largest distance Laplacian eigenvalue $\partial_{2}(G) \geq n$ and $\partial_{2}(T) \geq 2 n-1$, which confirm two conjectures in [2]; they also proved that the second largest distance signless Laplacian eigenvalue $q_{2}(T) \geq 2 n-5$ (also see [6]), which confirms a conjecture in [3]. Das [6] obtained that for any connected unicyclic graph G, $q_{2}(G) \geq 2 n-5$. Recently, Lin and Das [7] determined the lower bound of $q_{2}(G)$ for any connected n-vertex graph G in terms of the independence number α of G :

$$
q_{2}(G) \geq \frac{3 n+2 \alpha-6-\sqrt{n^{2}-4 n \alpha+4 n+12 \alpha^{2}-16 \alpha+4}}{2}
$$

with equality if and only if G is isomorphic to $K_{n-\alpha} \vee \alpha K_{1}$.
Inspired by the above result, we naturally want to ask: how about the lower bound of $q_{2}(G)$ or $\partial_{2}(G)$ of G in terms of other parameters. Furthermore, as we know, matching number is an important structure parameter in graph theory. Therefore, in this paper we investigate the relation between matching number and $\partial_{2}(G)$, obtaining the following conclusion.

Let $K_{m, n-m}$ be a complete bipartite graph with partitions $|X|=m$ and $|Y|=n-m$. Suppose any vertex $u \in Y$, then denote by $K_{m, n-m-1}+u$ the graph obtained from $K_{m, n-m}$ by removing the edges incident with u such that u is a pendant vertex.

Theorem 1.1. Let G be a connected simple graph with order $n \geq 4$ and matching number $m(G)=m$. Then the following assertions hold.
(i) If $m=\left\lfloor\frac{n}{2}\right\rfloor$, then $\partial_{2}(G) \geq n$ with equality holding if and only if G is K_{n} or $K_{n}-e$ with $e \in E\left(K_{n}\right)$ being an edge.
(ii) If $1 \leq m \leq\left\lfloor\frac{n}{2}\right\rfloor-1$, then $\partial_{2}(G) \geq 2 n-m$, with equality holding if and only if G is a spanning subgraph of $K_{m} \vee \overline{K_{n-m}}$ and G contains $K_{m, n-m-1}+u$ as a spanning subgraph.

Remark 1.2. The authors of [2] conjectured that for a tree G of order $n \geq 5, \partial_{2}(G) \geq$ $2 n-1$ with equality if and only if G is the star S_{n}, which is proved in [16]. Since the

https://daneshyari.com/en/article/8953102

Download Persian Version:
https://daneshyari.com/article/8953102

Daneshyari.com

[^0]: * Corresponding author. E-mail address: tflqsd@qfnu.edu.cn (F. Tian).
 ${ }^{1}$ Supported by the National Natural Science Foundation of China (11571360).

