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Abstract

We consider the kernel-based coefficient least squares learning algorithm for regression with lq -
regularizer, 1 < q ≤ 2. Our error analysis is carried out under more general conditions. The kernel function
may be non-positive definite and the output sample values satisfy the moment hypothesis rather than the
uniform boundedness. We derive the capacity dependent error bounds of the algorithm by constructing the
stepping stone function for the indefinite kernels. When the output values are bounded, we obtain a learning
rate that can be arbitrarily close to the best rate O(m−1) under some mild conditions of the regression
function and the hypothesis space.
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1. Introduction and main results

Supervised learning aims at finding the function relationship between inputs and outputs
from the observed samples. In this paper we consider the least squares for regression which
is a classical topic in learning theory. It can be formulated as follows. Let X be a compact
metric space and Y = R. Let ρ be a Borel probability measure on Z = X × Y . We define the
generalization error for a function f : X → Y as

E( f ) =

∫
Z

( f (x) − y)2dρ.

Denote by L2
ρX

(X ) the Hilbert space of the square integrable functions defined on X with
respect to the measure ρX , where ρX is the marginal measure of ρ on X and ∥ f (·)∥ρX =

(
∫

X | f (·)|2dρX )
1
2 . The regression function fρ which minimizes E( f ) over all f ∈ L2

ρX
(X ) is

given by

fρ(x) =

∫
Y

ydρ(y|x),

where ρ(·|x) is the conditional distribution induced by ρ at x ∈ X . In the framework of
supervised learning, ρ is unknown and what we have in hand is a set of random samples
z = {zi }

m
i=1 = {(xi , yi )}m

i=1 ∈ Zm drawn from the measure ρ independently and identically.
The task of the regression problem is to find a good approximation fz of fρ , which is derived
from some learning algorithms by minimizing the empirical error

Ez( f ) =
1
m

m∑
i=1

( f (xi ) − yi )2.

The quality of approximation of fz to fρ is measured by the excess generalization error

∥ fz − fρ∥2
ρX

= E( fz) − E( fρ).

A large class of learning algorithms for regression take the regularization scheme to prevent
the ill-posedness in a reproducing kernel Hilbert space (RKHS) associated with a Mercer kernel.
Such a kernel K is a function on X × X which is continuous, symmetric, and positive semi-
definite. The RKHS HK is defined to be the completion of the linear span of the set of functions
{Kx := K (x, ·) : x ∈ X} with the inner product⟨ n∑

i=1

αi Kxi ,

m∑
j=1

β j Kt j

⟩
K

:=

n∑
i=1

m∑
j=1

αiβ j K (xi , t j ).

The reproducing property of HK

f (x) = ⟨ f, Kx ⟩K

holds for all x ∈ X and f ∈ HK .
The regularized least squares algorithm for regression in HK is given by

fz,λ = arg min
f ∈HK

{
1
m

m∑
i=1

(yi − f (xi ))2
+ λ∥ f ∥

2
K

}
, (1.1)

where λ > 0 is the regularization parameter with limm→∞λ(m) = 0. The error analysis for the
algorithm (1.1) has been well studied in the extensive literature, see [2,1,18,22].
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