

QX factorization of centrosymmetric matrices

A. Steele, J. Yalim, B. Welfert*
School of Mathematical \&' Statistical Sciences, Arizona State University, Tempe, AZ 85287-1804, United States of America

A R T I CLE IN F O

Article history:

Received 8 June 2018
Received in revised form 27 June 2018
Accepted 27 June 2018
Available online xxxx

Keywords:

Centrosymmetry
QR factorization

Abstract

We show how the factorization $A=Q X$, introduced in Burnik (2015) [2], of a real centrosymmetric $m \times n$ matrix A into a centrosymmetric orthogonal $m \times m$ matrix Q and a centrosymmetric $m \times n$ matrix X with a double-cone structure can be directly obtained via standard $Q R$ factorizations of two matrices about half the size of A. Examples and a Matlab code are included.

© 2018 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

A matrix $A \in \mathbb{R}^{m \times n}$ is centrosymmetric if and only if [6]

$$
J_{m} A=A J_{n}
$$

where

$$
J_{m}:=\left[. .{ }_{1}^{1}\right] \in \mathbb{R}^{m \times m}
$$

and J_{n} is similarly defined. Premultiplying A by J_{m} reverses the ordering of its rows, while postmultiplying A by J_{n} reverses the ordering of its columns (the notation R - for "reflection" - is also often used for J, but avoided here to prevent confusion with an upper triangular matrix). Thus, a centrosymmetric matrix is symmetric about its center.

Centrosymmetric matrices occur in many signal processing applications [3]. Our own interest in this class of matrices stems from pseudospectral approximations of differential equations. In particular, second-order differentiation matrices based on collocation sets which are symmetric with respect to the origin are centrosymmetric.

Square centrosymmetric matrices can be easily block-diagonalized via an orthogonal similarity transformation [6, Th. 9, p. 714], a first step in the efficient full diagonalization or inversion of these matrices [1,4].

While much focus has been placed on this full diagonalization, very little work has been done on QR-like factorizations, which are often building blocks in diagonalization algorithms, of centrosymmetric matrices. Burnick [2] recently introduced a constructive algorithm to factor a centrosymmetric matrix $A \in \mathbb{R}^{m \times n}$ as a product of a centrosymmetric orthogonal matrix Q and a centrosymmetric matrix X with a double-cone structure. For example,

[^0]https://doi.org/10.1016/j.apnum.2018.06.006
0168-9274/© 2018 IMACS. Published by Elsevier B.V. All rights reserved.
\[

A=\left[$$
\begin{array}{rrrr}
-2 & 3 & -3 & -1 \tag{1}\\
2 & 2 & 3 & 2 \\
2 & 3 & 2 & 2 \\
-1 & -3 & 3 & -2
\end{array}
$$\right]=\frac{1}{5}\left[$$
\begin{array}{rrrr}
-4 & 2 & 2 & 1 \\
2 & -1 & 4 & 2 \\
2 & 4 & -1 & 2 \\
1 & 2 & 2 & -4
\end{array}
$$\right]\left[$$
\begin{array}{rrcc}
3 & -1 & 5 & 2 \\
& 2 & 1 \\
& 1 & 2 \\
2 & 5 & -1 & 3
\end{array}
$$\right]=Q X
\]

Any symmetric permutation of the columns of Q and corresponding rows of X preserves the centrosymmetric properties of Q and X, the orthogonality of Q, and the double-cone structure of X, so that the factorization (1) is not unique, even with non-negative diagonal coefficients of X. Interestingly, none of these permutations leads, in this example, to a matrix Q which belongs to the connected component containing the 4×4 identity matrix, as characterized in [5, B.2].

Example 3.3 of [2] illustrates the factorization for a rectangular matrix A with odd dimensions m and n :

$$
A=\left[\begin{array}{crc}
1 & 2 & -1 \tag{2a}\\
0.2 & 4 & 5 \\
3 & -1 & 3 \\
5 & 4 & 0.2 \\
-1 & 2 & 1
\end{array}\right]=Q X
$$

with

$$
Q \approx\left[\begin{array}{ccccc}
0.192308 & -0.189023 & -0.59285 & 0.734054 & -0.192308 \tag{2b}\\
-0.0741255 & 0.072705 & 0.243637 & 0.45732 & 0.848951 \\
0.447015 & -0.459355 & -0.422304 & -0.459355 & 0.447015 \\
0.848951 & 0.45732 & 0.243637 & 0.072705 & -0.0741255 \\
-0.192308 & 0.734054 & -0.59285 & -0.189023 & 0.192308
\end{array}\right]
$$

(corrected from Q in [2]) and

$$
X \approx\left[\begin{array}{lll}
5.95559 & 2.65229 & 0.755592 \tag{2c}\\
& 3.66952 & \\
& 3.66952 & \\
0.755592 & 2.65229 & 5.95559
\end{array}\right]
$$

Centrosymmetry and orthogonality of Q also guarantee [2, Prop. 2.14]

$$
\begin{equation*}
Q^{T} J_{m} Q=Q^{T} Q J_{m}=J_{m} \tag{3}
\end{equation*}
$$

Matrices satisfying (3) are called perplectic [5, (2.8c)].
Burnick's algorithm for obtaining Q and X uses centrosymmetric Householder reflection matrices to centrosymmetrically zero-out appropriate coefficients of A, and closely follows the process at the core of the traditional Householder QR factorization. Instead, we show here how the standard $Q R$ factorizations of the two diagonal blocks in the generalization, equations (4) and (9), of the block-diagonalization exposed in [6, Th. 9, p. 714] to rectangular centrosymmetric matrices, can be leveraged to obtain an equivalent QX factorization, in a conceptually and practically simpler fashion.

2. Centrosymmetric QX

2.1. Even dimensions $(m, n)=(2 p, 2 q)$

The construction of the matrices Q and X is best explained first in the even dimensions case. An $m \times n$ centrosymmetric matrix A has the structure (compare [6, Th. 9(a)])

$$
A=\left[\begin{array}{cc}
A_{1} & A_{2} J_{q} \tag{4}\\
J_{p} A_{2} & J_{p} A_{1} J_{q}
\end{array}\right]=U_{p}\left[\begin{array}{cc}
A_{1}+A_{2} & \\
& A_{1}-A_{2}
\end{array}\right] U_{q}^{T}
$$

with $A_{1}, A_{2} \in \mathbb{R}^{p \times q}$ and

$$
U_{k}=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
I_{k} & I_{k} \tag{5}\\
J_{k} & -J_{k}
\end{array}\right] \in \mathbb{R}^{2 k \times 2 k}, \quad k=p, q
$$

Define orthogonal matrices $Q_{ \pm} \in \mathbb{R}^{p \times p}$ and upper triangular matrices $R_{ \pm} \in \mathbb{R}^{p \times q}$ from the two standard QR factorizations

$$
\begin{equation*}
A_{1} \pm A_{2}=Q_{ \pm} R_{ \pm} \tag{6}
\end{equation*}
$$

https://daneshyari.com/en/article/8953113

Download Persian Version:

https://daneshyari.com/article/8953113

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: ajsteele@asu.edu (A. Steele), yalim@asu.edu (J. Yalim), welfert@asu.edu (B. Welfert).

