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We show how the factorization A = Q X , introduced in Burnik (2015) [2], of a real 
centrosymmetric m × n matrix A into a centrosymmetric orthogonal m × m matrix Q and 
a centrosymmetric m × n matrix X with a double-cone structure can be directly obtained 
via standard QR factorizations of two matrices about half the size of A. Examples and a
Matlab code are included.

© 2018 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

A matrix A ∈R
m×n is centrosymmetric if and only if [6]

Jm A = A Jn,

where

Jm :=
[

1
· · ·1

]
∈ R

m×m,

and Jn is similarly defined. Premultiplying A by Jm reverses the ordering of its rows, while postmultiplying A by Jn

reverses the ordering of its columns (the notation R – for “reflection” – is also often used for J , but avoided here to prevent 
confusion with an upper triangular matrix). Thus, a centrosymmetric matrix is symmetric about its center.

Centrosymmetric matrices occur in many signal processing applications [3]. Our own interest in this class of matri-
ces stems from pseudospectral approximations of differential equations. In particular, second-order differentiation matrices 
based on collocation sets which are symmetric with respect to the origin are centrosymmetric.

Square centrosymmetric matrices can be easily block-diagonalized via an orthogonal similarity transformation [6, Th. 9, 
p. 714], a first step in the efficient full diagonalization or inversion of these matrices [1,4].

While much focus has been placed on this full diagonalization, very little work has been done on QR-like factorizations, 
which are often building blocks in diagonalization algorithms, of centrosymmetric matrices. Burnick [2] recently introduced 
a constructive algorithm to factor a centrosymmetric matrix A ∈ R

m×n as a product of a centrosymmetric orthogonal matrix 
Q and a centrosymmetric matrix X with a double-cone structure. For example,
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A =

⎡
⎢⎢⎣

−2 3 −3 −1
2 2 3 2
2 3 2 2

−1 −3 3 −2

⎤
⎥⎥⎦ = 1

5

⎡
⎢⎢⎣

−4 2 2 1
2 −1 4 2
2 4 −1 2
1 2 2 −4

⎤
⎥⎥⎦

⎡
⎢⎢⎣

3 −1 5 2
2 1
1 2

2 5 −1 3

⎤
⎥⎥⎦ = Q X . (1)

Any symmetric permutation of the columns of Q and corresponding rows of X preserves the centrosymmetric properties 
of Q and X , the orthogonality of Q , and the double-cone structure of X , so that the factorization (1) is not unique, even 
with non-negative diagonal coefficients of X . Interestingly, none of these permutations leads, in this example, to a matrix 
Q which belongs to the connected component containing the 4 × 4 identity matrix, as characterized in [5, B.2].

Example 3.3 of [2] illustrates the factorization for a rectangular matrix A with odd dimensions m and n:

A =

⎡
⎢⎢⎢⎢⎣

1 2 −1
0.2 4 5
3 −1 3
5 4 0.2

−1 2 1

⎤
⎥⎥⎥⎥⎦ = Q X, (2a)

with

Q ≈

⎡
⎢⎢⎢⎢⎣

0.192308 −0.189023 −0.59285 0.734054 −0.192308
−0.0741255 0.072705 0.243637 0.45732 0.848951

0.447015 −0.459355 −0.422304 −0.459355 0.447015
0.848951 0.45732 0.243637 0.072705 −0.0741255

−0.192308 0.734054 −0.59285 −0.189023 0.192308

⎤
⎥⎥⎥⎥⎦ , (2b)

(corrected from Q in [2]) and

X ≈

⎡
⎢⎢⎢⎣

5.95559 2.65229 0.755592
3.66952

3.66952
0.755592 2.65229 5.95559

⎤
⎥⎥⎥⎦ . (2c)

Centrosymmetry and orthogonality of Q also guarantee [2, Prop. 2.14]

Q T Jm Q = Q T Q Jm = Jm. (3)

Matrices satisfying (3) are called perplectic [5, (2.8c)].
Burnick’s algorithm for obtaining Q and X uses centrosymmetric Householder reflection matrices to centrosymmetri-

cally zero-out appropriate coefficients of A, and closely follows the process at the core of the traditional Householder QR 
factorization. Instead, we show here how the standard QR factorizations of the two diagonal blocks in the generalization, 
equations (4) and (9), of the block-diagonalization exposed in [6, Th. 9, p. 714] to rectangular centrosymmetric matrices, 
can be leveraged to obtain an equivalent QX factorization, in a conceptually and practically simpler fashion.

2. Centrosymmetric QX

2.1. Even dimensions (m, n) = (2p, 2q)

The construction of the matrices Q and X is best explained first in the even dimensions case. An m ×n centrosymmetric 
matrix A has the structure (compare [6, Th. 9(a)])

A =
[

A1 A2 Jq

J p A2 J p A1 Jq

]
= U p

[
A1 + A2

A1 − A2

]
U T

q , (4)

with A1, A2 ∈ R
p×q and

Uk = 1√
2

[
Ik Ik

Jk − Jk

]
∈R

2k×2k, k = p,q. (5)

Define orthogonal matrices Q ± ∈ R
p×p and upper triangular matrices R± ∈ R

p×q from the two standard QR factorizations

A1 ± A2 = Q ±R±. (6)
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