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CONJUGATION ORBITS OF LOXODROMIC PAIRS IN SU(n,1)

KRISHNENDU GONGOPADHYAY AND SHIV PARSAD

ABSTRACT. Let HZ be the n-dimensional complex hyperbolic space and SU(n,1) be the
(holomorphic) isometry group. An element g in SU(n, 1) is called lozodromic or hyperbolic if
it has exactly two fixed points on the boundary OH. We classify SU(n, 1) conjugation orbits
of pairs of loxodromic elements in SU(n, 1).

1. INTRODUCTION

Let HZ be the n-dimensional complex hyperbolic space. The group SU(n,1) acts by the
holomorphic isometries on HE. An element of SU(n, 1) is called hyperbolic or lozodromic if it
has exactly two fixed points on the boundary 0HZ of the complex hyperbolic space.

Let Fo = (x,y) be a two-generator free group. Let X(F2,SU(n, 1)) denote the orbit space
Hom(F3,SU(n,1))/SU(n, 1) of the conjugation action of SU(n, 1) on the space Hom(F3, SU(n, 1))
of faithful representations of Fy into SU(n,1). Let Xg(Fo2,SU(n,1)) denote the subset of
X(F2,SU(n, 1)) consisting of representations p such that both p(z) and p(y) are loxodromic
elements in SU(n, 1) having no common fixed point. A problem of geometric interest is to
parametrize this subset X¢(F2,SU(n,1)). The motivation for doing this is the construction of
Fenchel-Nielsen coordinates in the classical Teichmiiller space that is built upon a parametriza-
tion of discrete, faithful, and totally loxodromic representations in Xg(Fg, SL(2,R)). This is
rooted back to the classical works of Fricke [Fri96] and Vogt [Vog89] from whom it follows that
a non-elementary two-generator free subgroup of SL(2,R) is determined up to conjugation by
the traces of the generators and their product, see Goldman [Gol09] for an exposition.

The space X¢(Fo,SU(n, 1)) contains the discrete, faithful, and totally loxodromic or type-
preserving representations. These are curious families of representations and has not been
well-understood even in the case n = 2. We refer to the surveys [PP10], [Sch02], [Will6] and
the references therein for an up to date account of the investigations in this direction.

For notational convenience, an element in X¢(Fg,SU(n, 1)) will be called a ‘loxodromic gen-
erated representation’, or simply, a ‘loxodromic representation’. Most of the existing works to
understand X¢(Fo,SU(n, 1)) is centered around the case n = 2, though it would be interesting
to generalize some of above mentioned works for n > 2. A starting point for this could be
the classification of pairs of elements in SU(n, 1) up to conjugacy. In other words, the problem
would be to determine a representation in X¢(Fa, SU(n,1)).

To do this, following classical invariant theory, one approach is to obtain this classification
using trace invariants like the coefficients of the characteristic polynomials and their compo-
sitions. In low dimensions, this approach gives some understanding of the loxodromic pairs.
Will [Wil06, Wil09] classified the loxodromic pairs in SU(2,1). Will’s classification is built upon
the work of Lawton [Law07], also see [Wen94], who obtained trace parameters for elements in
X(F2,SL(3,C)). It follows from these works that an irreducible loxodromic representation in
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