Accepted Manuscript

Preparation and surface modification of PVDF-carbon felt composite bipolar plates for vanadium flow battery

Zhenhao Liu, Baoguo Wang, Lixin Yu

PII: S2095-4956(18)30075-5 DOI: 10.1016/j.jechem.2018.04.010

Reference: JECHEM 591

To appear in: Journal of Energy Chemistry

Received date: 26 January 2018 Revised date: 20 March 2018 Accepted date: 19 April 2018

Please cite this article as: Zhenhao Liu, Baoguo Wang, Lixin Yu, Preparation and surface modification of PVDF-carbon felt composite bipolar plates for vanadium flow battery, *Journal of Energy Chemistry* (2018), doi: 10.1016/j.jechem.2018.04.010

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Preparation and surface modification of PVDF-carbon felt composite bipolar plates for vanadium flow battery

Zhenhao Liu, Baoguo Wang*, Lixin Yu

The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering,

Tsinghua University, Beijing 100084, P. R. China.

*Corresponding author: Baoguo Wang, Tel.: +86 10 62788777. Fax: +86 10 62770304.

Abstract

The performance of vanadium flow batteries (VFBs) is closely related to the materials used in

the bipolar plates. Carbon-based composite bipolar plates are particularly suitable for VFB

applications. However, most original preparation methods cannot simultaneously achieve good

electrical conductivity and mechanical performance. In this paper, we propose a novel approach to

fabricating bipolar plates with carbon plastic materials, including four steps, namely coating a

poly(vinylidene fluoride)(PVDF) solution onto carbon felt, solvent evaporation, hot-pressing, and

surface modification. The resulting bipolar plates showed high conductivity, good mechanical

strength, and corrosion resistance. Surface modification by coating with carbon nanotubes (CNTs)

removed the PVDF-rich layer from the surface of the carbon fibers. The high surface area of the

CNT withdrew PVDF resin from the carbon fiber surface, and promoted the formation of a

conductive network. The flexibility and battery charge-discharge cycle measurements showed that

the composite bipolar plates can meet requirements for VFB applications.

Keywords: Bipolar plate, Surface modification, Carbon nanotubes, PVDF

Introduction

Bipolar plate(BP) is an important part of vanadium flow batteries, by which single cells

connected in series can generate high voltages to meet the power output needs of grid-scale energy

conversion and storage [1-3]. Bipolar plate is generally required with excellent electrical

conductivity, adequate mechanical stability, good corrosion resistance, and low permeability to the

electrolyte [4-6]. Furthermore, bipolar plates must be amenable to rapid, low-cost processing

methods if they are to be widely used in large scale electricity systems.

Download English Version:

https://daneshyari.com/en/article/8953270

Download Persian Version:

https://daneshyari.com/article/8953270

<u>Daneshyari.com</u>