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a b s t r a c t 

The geometric measure of entanglement of a multipartite pure state is defined it terms of its geometric 

distance from the set of separable pure states. The quantum eigenvalue problem is derived to compute 

the separable pure state nearest to the given multipartite pure state. Computing the modulus largest 

quantum eigenvalue for a multipartite pure state is equivalent to finding the best complex rank-one 

approximation of the complex unit tensors, associated with the multipartite pure states. This paper is 

devoted to present a complex-valued neural networks approach for the computation of the quantum 

eigenvalue problem for multipartite pure states. We design the neural networks for computing the best 

rank-one tensor approximation of complex tensors, and prove that the solution of the networks is locally 

asymptotically stable in the sense of Lyapunov stability theory. This solution also converges to the local 

optimal solutions of the best complex rank-one tensor approximation. We illustrate our theoretical results 

via numerical simulations. 
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1. Introduction 

A tensor is an N -dimensional array of numbers denoted by 

script notation A ∈ C 

I 1 ×I 2 ×... ×I N with entries given by 

a i 1 i 2 ... i N ∈ C , for i n = 1 , 2 , . . . , I n , with n = 1 , 2 , . . . , N. 

We use CT N, I to denote the set of order N dimension I complex 

tensors in general. That is, when A ∈ CT N,I , we have a i 1 i 2 ... i N ∈ C 

where i n = 1 , 2 , . . . , I and n = 1 , 2 , . . . , N. 

The problem of best rank-one approximation of A ∈ C 

I 1 ×I 2 ×... ×I N 

is to find a real scalar σ and N unit vectors x n ∈ C 

I n (‖ x n ‖ 2 = 1) 

that minimize 

I 1 ∑ 

i 1 =1 

I 2 ∑ 

i 2 =1 

. . . 

I N ∑ 

i N =1 

∣∣a i 1 i 2 ... i N − σ · (x 1 ,i 1 x 2 ,i 2 . . . x N,i N ) 
∣∣2 , 
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where x n,i n is the i n th element of x n ∈ C 

I n for i n = 1 , 2 , . . . , I n with 

n = 1 , 2 , . . . , N, and σ ∈ R is a scaling factor. The relationship be- 

tween the best rank-one approximation of complex tensors and ge- 

ometric measures of entanglement in multipartite pure states will 

be discussed in Section 2.1 . 

There exist numerical methods to compute the best rank-one 

approximation of real tensors, e.g., the alternating least squares 

(ALS) method, truncated higher-order singular value decomposi- 

tion, higher-order power method and semi-definite relaxations. We 

refer to Zhang and Golub [47] , De Lathauwer, De Moor and Vande- 

walle [13,14] , Kofidis and Regalia [27] , Qi et al. [38] , Ni and Wang 

[36] , Nie and Wang [37] and the references therein. 

Ni et al. [35] considered two eigenvalue problems of complex 

tensors: the U-eigenvalue problem of a complex tensor and the 

US-eigenvalue problem of a complex symmetric tensor, which are 

related to the best rank-one approximation of complex tensors. Re- 

cently, Ni and Bai [34] proposed an algorithm for computing the 

US-eigenpairs of complex symmetric tensors based on a spherical 

optimization problem of real-valued functions with complex vari- 

ables. This algorithm was used to compute the upper bound of 

entanglement in an arbitrary multi-partite system [39] . Che et al. 

[9] presented iterative algorithms for computing US- (or U-) eigen- 

pairs of complex tensors based on the Takagi factorization of com- 

plex matrices. 

Wang et al. [44] proposed complex-valued neural network 

models for the computation of the Takagi vector of a complex sym- 

metric matrix that corresponds to the largest Takagi values. The 

readers can refer to [2,3,24] , which studied a complex nonlinear 

convex programming problem by means of complex-valued neural 

network models. Generally speaking, complex-valued neural net- 

works have different and more complicated properties than real- 

valued ones. Thus, it is important to study the dynamical behaviors 

of complex-valued neural networks. 

One important aspects of the dynamics of neural networks is 

their stability. To analyze the stability of neural networks, vari- 

ous approaches, such as Lyapunov function method and synthesis 

method, have been proposed [12,30,41] . Che et al. [8] presented a 

neural dynamical network to compute a local optimal rank-one ap- 

proximation of a real tensor and proved that the state of the pro- 

posed neural network is locally asymptotically stable in the sense 

of Lyapunov stability theory. The main purpose of this paper is 

to design complex-valued neural network models for computing 

the local optimal rank-one approximation of complex tensors. We 

also derive that the solution of the complex-valued ODEs is locally 

asymptotically stable in the sense of Lyapunov stability theory. As 

shown in Section 7 , the method of complex-valued neural network 

models is a strong tool for calculating geometric measure of entan- 

glement. 

Throughout this paper, we assume that I, J , and N will be re- 

served to denote the index upper bounds, unless stated otherwise. 

Scalars are denoted by lower Greek letters and lower Roman let- 

ters, e.g., α and a . Vectors are denoted by boldface letters and are 

lower case, e.g., z . Matrices are denoted by block capital letters, 

e.g., A . Tensors are denoted by calligraphic letters, e.g., A . The su- 

perscripts · � , · and · ∗ are used for the transpose, the complex 

conjugate and conjugate transpose, respectively. 

The two-norm and Frobenius norm are denoted by ‖ · ‖ 2 and 

‖ · ‖ F , respectively. The entry with row index i and column index 

j in a matrix A , i.e., ( A ) ij , is symbolized by a ij (also (z ) i = z i and 

(A ) i 1 i 2 ... i N = a i 1 i 2 ... i N ). We use parentheses to denote the concatena- 

tion of two or more vectors, e.g., ( a, b ) is equivalent to ( a � , b 

� ) � . 
We use � ( z ) and � ( z ) to denote the real and imaginary parts of a 

vector z ∈ C 

I . 

The rest of this paper is organized as follows. In Section 2 , we 

introduce basic notations about quantum states, convert the prob- 

lem for measuring entanglement of a multipartite pure state to the 

complex best rank-one tensor approximation, and present the ex- 

pressions for the complex gradient of real functions in complex 

variables. In Section 3 , we define the generalized Rayleigh quotient 

of the complex tensors and establish the relationship between the 

local optimal complex rank-one tensor approximation and the non- 

linear quantum eigenvalue problem (US-eigenvalue problems or 

U-eigenvalue problems [35] ) based on the generalized Rayleigh 

quotient of any complex tensor. We present neural networks and 

consider the properties of these neural networks in Section 4 . In 

Section 5 , we establish the complex-valued neural networks to find 

the local optimal complex rank-one tensor approximation and an- 

alyze its local asymptotic stability in the sense of Lyapunov stabil- 

ity theory. We illustrate our theory via numerical simulations in 

Section 6 and conclude our paper in Section 7 . 

2. Preliminaries 

The mode- n product [28] of a complex tensor A ∈ C 

I 1 ×I 2 ×... ×I N 

by a matrix B ∈ C 

J n ×I n , denoted by A ×n B , is a tensor C ∈ 

C 

I 1 ×... ×I n −1 ×J n ×I n +1 ×... ×I N , whose entries are given by 

c i 1 ... i n −1 ji n +1 ... i N = 

I n ∑ 

i n =1 

a i 1 i 2 ... i N b ji n , n = 1 , 2 , . . . , N. 

In particular, the mode- n multiplication of a complex tensor 

A ∈ C 

I 1 ×I 2 ×... ×I N by a vector z ∈ C 

I n is denoted by A ×n z 
� . If we 

set C = A ×n z 
� ∈ C 

I 1 ×... ×I n −1 ×I n +1 ×... ×I N , then we have element-wise 

[28] , 

c i 1 ... i n −1 i n +1 ... i N = 

I n ∑ 

i n =1 

a i 1 ... i n −1 i n i n +1 ... i N x i n . 

Given N vectors z n ∈ C 

I n (n = 1 , 2 , . . . , N) , the notation A ×1 

z � 1 ×2 z 
� 
2 . . . ×N z 

� 
N is easy to define. For any given tensor A ∈ 

C 

I 1 ×I 2 ×... ×I N and the matrices F ∈ C 

J n ×I n and G ∈ C 

J m ×I m , one has 

[28] {
(A ×n F ) ×m 

G = (A ×m 

G ) ×n F = A ×n F ×m 

G ;
(A ×n F ) ×n G = A ×n (G · F ) , with J n = I m 

, 

with m � = n ∈ { 1 , 2 , . . . , N} , where ‘ · ’ represents the multiplication 

of two matrices. 

If the entries of A ∈ C 

I 1 ×I 2 ×... ×I N are given by a i 1 i 2 ... i N = 

x 1 ,i 1 x 2 ,i 2 . . . x N,i N 
, where x n,i n is the i n th element of x n ∈ C 

I n for 

n = 1 , 2 , . . . , N, then we call A a complex rank-one tensor [14,47] . 

2.1. Geometric measure of entanglement 

Entanglement has been identified as a resource central to quan- 

tum information processing. As a result, the task of characterizing 

and quantifying entanglement is vitally important in quantum in- 

formation theory. The geometric measure of entanglement is one 

of most natural and important measures for pure states in bipar- 

tite and multipartite systems. We refer to [42,45] and their infer- 

ences therein. Mathematically speaking, the geometric measure of 

entanglement is nothing but the injective tensor norm [21] , which 

appears in the theory of operator algebra [15] . The geometric mea- 

sure of entanglement also has found wild applications in various 

different topics, such as many-body physics [31,33] , entanglement 

witnesses [17,20] and the study of quantum channel capacities 

[7,16,46] . 

Wei and Goldbart [45] extended the geometric measure of en- 

tanglement from a bipartite pure state [42] to a multipartite pure 

state via the entanglement eigenvalue of a nonlinear quantum 

eigenvalue problem. Ni et al. [35] studied the nonlinear quantum 

eigenvalue problem in two forms: the U-eigenvalue problem of a 
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