
ARTICLE IN PRESS

JID: NEUCOM [m5G; July 6, 2018;4:18]

Neurocomputing 0 0 0 (2018) 1–6

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

Efficiency of deep networks for radially symmetric functions

Brendan McCane

∗, Lech Szymanski

Department of Computer Science, University of Otago, Dunedin, New Zealand

a r t i c l e i n f o

Article history:

Received 28 July 2017

Revised 8 May 2018

Accepted 11 June 2018

Available online xxx

Communicated by Dr Q Wei

Keywords:

Deep networks

Function approximation

a b s t r a c t

We prove that radially symmetric functions in d dimensions can be approximated by a deep network with

fewer neurons than the previously best known result. Our results are much more efficient in terms of the

support radius of the radial function and the error of approximation. Our proofs are all constructive and

we specify the network architecture and almost all of the weights. The method relies on space-folding

transformations that allow us to approximate the norm of a high dimensional vector using relatively few

neurons.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Deep networks have been stunningly successful in many ma-

chine learning domains since the area was reinvigorated by the

work of Krizhevsky et al. [6] . Despite their success, relatively lit-

tle is known about them theoretically, although this is changing. In

particular, it would be very useful to know theoretically for which

problems deep networks are more effective than shallow learners.

This paper extends previous work on approximating radially sym-

metric functions. It provides a new upper bound for the number

of neurons required in a deep network with rectified linear units

(ReLUs) to approximate a radially symmetric function and does so

using a constructive proof. A method for building ReLU networks

that do the approximation is given.

2. Related work

Most theoretical work on deep networks consists of existence

proofs that give no insight into how to build a network for the

problem under consideration. For example, ReLU networks with

n 0 inputs, L hidden layers of width n ≥ n 0 can compute functions

that have �
(
(n/n 0)

(L −1) n 0 n n 0
)

linear regions compared to
∑ n 0

j=0

(
n
j

)
for a shallow network [7] . More generally, Telgarsky [10] proved

for semi-algebraic neurons (including ReLU, sigmoid etc), that net-

works exist with �(k 3) layers and up to a constant number of

nodes per layer that require at least 2 k nodes to approximate with

a network of O (k) layers. Delalleau and Bengio [3] show that deep

sum-product networks exist for which a shallow network would

∗ Corresponding author.

E-mail address: mccane@cs.otago.ac.nz (B. McCane).

require exponentially more neurons to simulate. For convolutional

arithmetic circuits (similar to sum-product networks), Cohen et al.

[2] , in an important result, show that “besides a negligible (zero

measure) set, all functions that can be realized by a deep network

of polynomial size, require exponential size in order to be realized,

or even approximated, by a shallow network.”

The above works, except for Cohen et al. [2] focus on approxi-

mating deep networks with shallow networks, but do not indicate

what problems are best attacked with deep networks. For mani-

folds, Basri and Jacobs [1] show how deep networks can efficiently

represent low-dimensional manifolds and that these networks are

almost optimal, but they do not discuss limitations of shallow net-

works on the same problem. Somewhat similarly, Shaham et al.

[8] show that depth-4 networks can approximate a function on a

manifold where the number of neurons depends on the complex-

ity of the function and the dimensionality of the manifold and only

weakly on the embedding dimension. Again, they do not discuss

the limitations of shallow networks for this problem. Importantly,

both of these results are constructive and allow one to actually

build the network.

Szymanski and McCane [9] show that deep networks can

approximate periodic functions of period P over {0, 1} N with

O (log 2 N − log 2 P) parameters versus O (P log 2 N) for shallow. Eldan

and Shamir [4] show that networks with two hidden layers exist

such that the network can approximate a radially symmetric func-

tion with O (d 19/4) neurons, whereas a network with 1 hidden layer

requires at least O (e d) neurons. They do not extend the result to

deeper networks.

Therefore evidence is building that deep networks are more

powerful than their shallow counterparts in terms of the num-

ber of parameters or neurons required. Nevertheless, more work

is needed. In particular, it would be useful to determine which

https://doi.org/10.1016/j.neucom.2018.06.003

0925-2312/© 2018 Elsevier B.V. All rights reserved.

Please cite this article as: B. McCane, L. Szymanski, Efficiency of deep networks for radially symmetric functions, Neurocomputing (2018),

https://doi.org/10.1016/j.neucom.2018.06.003

https://doi.org/10.1016/j.neucom.2018.06.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
mailto:mccane@cs.otago.ac.nz
https://doi.org/10.1016/j.neucom.2018.06.003
https://doi.org/10.1016/j.neucom.2018.06.003

2 B. McCane, L. Szymanski / Neurocomputing 0 0 0 (2018) 1–6

ARTICLE IN PRESS

JID: NEUCOM [m5G; July 6, 2018;4:18]

problems are best solved with deep networks, and how to build

networks for those particular problems. In this work we directly

extend the work of Szymanski and McCane [9] and Eldan and

Shamir [4] . The latter work [4] is extended to deeper networks

for approximating radially symmetric functions that require fewer

parameters than their shallow counterparts. The former [9] is ex-

tended by generalising their notion of folding transformations to

work in multiple dimensions and more simply with ReLU net-

works. The proofs are constructive and allow us to build networks

for approximating radially symmetric functions.

3. Context and notation

A radially symmetric function is a function whose value is de-

pendent on the norm of the input only. We are interested in L -

Lipschitz functions f , | f (x) − f (y) | ≤ L | x − y | , as this covers many

functions common in classification tasks. The number of dimen-

sions of the input is d , and we assume that f is constant outside a

radius R . This is a similar context to that used by Eldan and Shamir

[4] . Further, we restrict ourselves to ReLU networks only, which is

more restrictive than Eldan and Shamir [4] , but allows us to explic-

itly construct the networks of interest. A network with N layers has

N − 1 hidden layers. Layer 0 is the input layer (not counted in the

number of layers), and layer N is the output layer.

Proofs are only sketched in the main body of the paper. De-

tailed proofs are provided in the supplementary material.

4. 3 Layer networks

We start by stating a modified form of Lemma 18 from Eldan

and Shamir [4] to do with 3 layer networks:

Lemma 1 (Modified form of Lemma 18 from Eldan and Shamir

[4]) . Let σ (z) = max (0 , z) . Let f : R → R be an L-Lipschitz function

supported on [0, R] . Then for any δ > 0, there exists a function g :

R

d → R expressible by a 3-layer network of width at most 6 d 2 R 2 +3 RL
δ

,

such that

sup

x ∈ R d
| g(x) − f (|| x ||) | < δ + L

√

δ

The proof follows the basic plan of Eldan and Shamir [4] where

the first layer is the input layer, the second layer approximates x 2
i

for each dimension i , and the third layer computes
∑

i x
2
i

and ap-

proximates f . Since several sections of the second layer are doing

the same thing (computing the square of their input), a weight-

sharing corollary follows immediately where only one copy of the

square approximation is needed.

Corollary 1 (3 Layer Weight Sharing) . Let σ (z) = max (0 , z) . Let

f : R → R be an L-Lipschitz function supported on [0, R] . Then for

any δ > 0, there exists a function g : R

d → R expressible by a 3-layer

weight-sharing network with at most 6 dR 2 +3 RL
δ

weights, such that

sup

x ∈ R d
| g(x) − f (|| x ||) | < δ + L

√

δ

5. Deep folding networks

In this section, we show how folding transformations can be

used to create a much deeper network with the same error, but

many fewer weights than needed in Lemma 1 . A folding transfor-

mation is one in which half of a space is reflected about a hyper-

plane, and the other half remains unchanged. Fig. 1 a demonstrates

how a sequence of folding transformations can transform a circle

in 2D to a small sector. After enough folds, we can discard the al-

most zero coordinates to approximate the norm. We will use this

general idea to prove the following theorem:

Theorem 1. Let x ∈ R

d , and σ (z) = max (0 , z) . Let f : R → R be an

L-Lipschitz function supported on [0, R] . Fix L, δ, R > 0 . There exists a

function g : R

d → R expressible by a O (d log 2 (d) + log 2 (d) log 2 (
R √

δ
))

layer network where the number of weights, and number of neurons,

N w

, N n = O (d 2 + d log 2 (
R √

δ
) +

3 RL
δ

) , such that:

sup

x ∈ R d
| g(x) − f (|| x ||) | < δ + L

√

δ

The approach taken here is a constructive one and specifies the

architecture of the network needed to approximate f . In fact, all

of the weights are specified by the construction. The approach is

somewhat different to that used to prove Lemma 1 . We build a

sequence of layers to directly approximate || x || and then approxi-

mate f in the last layer. To build our layers, we need a few helper

lemmas.

Lemma 2 (2D fold) . There exists a function g : R

2 → R

2 , expressible

by a ReLU network with 4 ReLU units and 2 sum units that can com-

pute a folding transformation about a line through the origin, repre-

sented by the unit direction vector l = (l x , l y) T . The function g is of

the form:

g(x) =

⎧ ⎨

⎩

x l · x ⊥ > 0 [
l 2 x − l 2 y 2 l x l y
2 l x l y l 2 y − l 2 x

]
x otherwise

The requisite ReLU network is shown in Fig. 1 b. Only one of

the nodes labeled x − (y −) and x + (y +) are active at any one time.

Therefore there are four possible cases depending on which two

nodes are active. Note that x − is active when l · x ⊥ < 0 and x + is ac-

tive when l · x ⊥ > 0. To approximate the 2D norm, we simply stack

layers of the type shown in Fig. 1 b with suitable choice of l x , l y at

each layer. Note that the summation nodes are not required since

they can be incorporated into the summations and weights of the

next ReLU layer. These 2D folds can be used to estimate the norm

of a vector as per the following lemma.

Lemma 3 (Approximate || x || , x ∈ R

2 , || x || < R) . There exists a func-

tion g : R

2 → R , expressible by a ReLU network with no more than

log 2
(
R π

δ

)
layers and 4 nodes per layer such that:

sup

x ∈ R 2 , || x ||≤R

| g(x) − || x ||| ≤ δ

Proof. The proof is short and simple. After f layers, each data point

will be within an angle of π
2 f

of the x -axis. Simple geometry and

appropriate approximations leads to:

δ = || x || − || x || cos

(
π

2

f

)
≤ R

(
1 − cos

(
π

2

f

))
≤ R

(
2 sin

(
π

2

f+1

))
≤ R

(
π

2

f

)
f ≤ log 2

(
R

π

δ

)
�

The following lemma generalises this construction to folds in d

dimensions.

Lemma 4 (Approximate || x || , x ∈ R

d) . There exists a function g :

R

d → R , expressible by a ReLU network with:

N l ≤ log 2 (d) log 2

(
Rπ

δ

[
(2

� (d+1)
2 	 − 1) +

√

2 (2

� d 2 	 − 1)
])

Please cite this article as: B. McCane, L. Szymanski, Efficiency of deep networks for radially symmetric functions, Neurocomputing (2018),

https://doi.org/10.1016/j.neucom.2018.06.003

https://doi.org/10.1016/j.neucom.2018.06.003

Download English Version:

https://daneshyari.com/en/article/8953570

Download Persian Version:

https://daneshyari.com/article/8953570

Daneshyari.com

https://daneshyari.com/en/article/8953570
https://daneshyari.com/article/8953570
https://daneshyari.com

