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a b s t r a c t 

The principal component analysis network (PCANet), which is one of the recently proposed deep learning 

architectures, achieves the state-of-the-art classification accuracy in various databases. However, the visu- 

alization or explanation of the PCANet is lacked. In this paper, we try to explain why PCANet works well 

from energy perspective point of view based on a set of experiments. The paper shows that the error 

rate of PCANet is qualitatively correlated with the inverse of the logarithm of BlockEnergy, which is the 

energy after the block sliding process of PCANet, and also this relation is quantified by using curve fitting 

method. The proposed energy explanation approach can also be used as a testing method for checking if 

every step of the constructed networks is necessary. 

© 2018 Published by Elsevier B.V. 

1. Introduction 

Deep learning [1–10] , especially convolutional neural networks 

(CNNs) [11,12] , is a hot research topic that achieves the state-of- 

the-art results in many image classification tasks, including Ima- 

geNet large scale visual recognition [13–17] , Labeled Faces in the 

Wild (LFW) face recognition [18–20] , handwritten digit recognition 

[11,21] , and other applications [22–31] , etc. The great success of 

deep learning systems is impressive, but a fundamental question 

still remains: Why do they work [32] ? In the recent years, sev- 

eral attempts have been made for explaining the deep learning sys- 

tems. These attempts can be roughly categorized into two classes: 

theoretical explanation and experimental explanation. 

Theoretical explanation method tries to elucidate deep learn- 

ing systems by using various theories, which can be classified into 

seven subclasses: (1) Renormalization Theory . Mehta and Schwab 

[33] constructed an exact mapping from the variational renormal- 

ization group (RG) scheme [34] to deep neural networks (DNNs) 

based on Restricted Boltzmann Machines (RBMs) [1,2] , and thus 
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explained DNNs as a RG-like procedure to extract relevant features 

from structured data. (2) Probabilistic Theory . Patel et al. [32] de- 

veloped a new probabilistic framework for deep learning based on 

a Bayesian generative probabilistic model. By relaxing the genera- 

tive model to a discriminative one, their models recover two of the 

current leading deep learning systems: deep CNNs and random de- 

cision forests (RDFs). (3) Information Theory. Tishby and Zaslavsky 

[35] analyzed DNNs via the theoretical framework of the informa- 

tion bottleneck principle. Steeg and Galstyan [36] further intro- 

duced a framework for unsupervised learning of deep representa- 

tions based on a hierarchical decomposition of information. (4) De- 

velopmental robotic perspective. Sigaud and Droniou [37] scrutinized 

deep learning techniques under the light of their capability to con- 

struct a hierarchy of multimodal representations from the raw sen- 

sors of robots. (5) Geometric viewpoint . Lei et al. [38] showed the 

intrinsic relations between optimal transportation and convex ge- 

ometry and gave a geometric interpretation to generative mod- 

els. Dong et al. [39] draw a geometric picture of the deep learn- 

ing system by finding its analogies with two existing geometric 

structures, the geometry of quantum computations and the ge- 

ometry of the diffeomorphic tem plate matching. (6) Group Theory. 

Paul and Venkatasubramanian [40] explained deep learning system 

from the group-theoretic perspective point of view and showed 

why higher layers of deep learning framework tend to learn more 
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abstract features. Shaham et al. [41] discussed the approximation 

of wavelet functions using deep neural nets. Anselmi et al. [42] ex- 

plained deep CNNs by invariant and selective theory, whose ideas 

come from i -Theory [43] , which is a recent theory of feedforward 

processing in sensory cortex. (7) Energy perspective. The mathe- 

matical analysis of CNNs was performed by Mallat in [44] , where 

wavelet scattering network (ScatNet) was proposed. The convo- 

lutional layer, nonlinear layer, pooling layer were constructed by 

prefixed complex wavelets, modulus operator, and average opera- 

tor, respectively. Owning to its characteristic of using prefixed fil- 

ters which are not learned from data, ScatNet was explained in 

[44] from energy perspective both in theory and experiment aspect, 

that is, ScatNet maintains the energy of image in each layer al- 

though using modulus operator. ScatNet achieves the state-of-the- 

art results in various image classification tasks [45] and was then 

extended to semi-discrete frame networks [46] as well as complex 

valued convolutional nets [47] . 

Experimental explanation methods tend to understand deep 

learning systems by inverting them to visualize the “filters”

learned by the model [48] . For example, Larochelle et al. [49] pre- 

sented a series of experiments on Deep Belief Networks (DBN) 

[1] and stacked autoencoder networks [3] by using artificial data 

and indicate that these models show promise in solving harder 

learning problems that exhibit many factors of variation. Goodfel- 

low et al. [50] examined the invariances of stacked autoencoder 

networks [3] and also convolutional deep belief networks (CDBNs) 

[4] by using natural images and natural video sequences. Erhan et 

al. [48] studied three filter visualization methods (Maximizing the 

activation, Sampling from a unit of a network, Linear combination 

of previous layers’ filters) on DBN [1] and Stacked Denoising Au- 

toencoders [5] . Szegedy et al. [51] reported two intriguing proper- 

ties of deep neural networks. Zeiler and Fergus [52] proposed De- 

ConvNet method in which the network computations were back- 

tracked to identify which image patches are responsible for cer- 

tain neural activations. DeConvNet uses AlexNet [11] as an exam- 

ple to observe the evolution of features during training and to di- 

agnose potential problems by using such a model. Simonyan et 

al. [53] demonstrated how saliency maps can be obtained from 

a Convnet by projecting back from the fully connected layers of 

the network. Girshick et al. [54] showed visualizations that identify 

patches within a dataset that are responsible for strong activations 

at higher layers in the model. Mahendran and Vedaldi [55] gave 

a general framework to invert CNNs and they tried to answer the 

following question: given an encoding of an image, to which extent 

is it possible to reconstruct the image itself? 

Recently, Chan et al. [56] proposed a new deep learning al- 

gorithm called principal component analysis network (PCANet), 

whose convolutional layer, nonlinear processing layer, and feature 

pooling layer consist of principal component analysis (PCA) filter 

bank, binarization, and block-wise histogram, respectively. Chan et 

al. [56] also visualize the filters of PCANet like in [48] and [52] . Al- 

though PCANet is constructed with most basic units, it surprisingly 

achieves the state-of-the-art performance for most image classi- 

fication tasks. PCANet arouses the interest of many researchers 

in this field. For example, Gan et al. proposed a graph embed- 

ding network (GENet) [57] for image classification. Wang and Tan 

[58] presented a C-SVDDNet for unsupervised feature learning. 

Feng et al. [59] presented a discriminative locality alignment net- 

work (DLANet) for scene classification. Ng and Teoh [60] proposed 

discrete cosine transform network (DCTNet) for face recognition. 

Gan et al. [61] presented a PCA-based convolutional network by 

combining the structure of PCANet and the LeNet-5 [11,12] . Zhao et 

al. [62] proposed multi-level modified finite radon transform net- 

work (MMFRTN) for image upsampling. Lei et al. [63] developed 

stacked image descriptor for face recognition. Li et al. [64] pro- 

posed SAE-PCA network for human gesture recognition in RGBD 

(Red, Green, Blue, Depth) images. Zeng et al. [65] proposed a 

quaternion principal component analysis network (QPCANet) for 

color image classification. Wu et al. [66] proposed a multilinear 

principal component analysis network (MPCANet) for tensor object 

classification. Although PCANet has been extensively investigated, 

the question still remains: Why it works well by using the most 

basic and simple units? To the best of our knowledge, no attempt 

to explain every step of the PCANet is available in the literature. 

In this paper, (1) We present a new way to visualize, explain 

and understand every step of PCANet from an energy perspective 

on experiment aspect by using five image databases: Yale database 

[67] , AR database [68] , CMU PIE face database [69] , ORL database 

[70] , and CIFAR-10 database [71] . The proposed energy explanation 

approach can provide more information than the filter visualiza- 

tion method reported in [56] ; (2) We shows qualitatively that the 

error rate of PCANet is correlated with the inverse of the logarithm 

of BlockEnergy, which is the energy after the block sliding process 

of PCANet, and then we try to find quantitatively their relations by 

using curve fitting method; (3) we show that the proposed energy 

explanation approach can be used as a testing method for check- 

ing if every step of the constructed networks is necessary; and (4) 

The energy explanation approach proposed in this paper can be 

extended to other PCANet-based networks [57–66] . 

The paper is organized as follows. PCANet is reviewed in 

Section 2 . Section 3 presents an energy method to visualize, ex- 

plain and understand every step of PCANet. Discussion is given in 

Sections 4 and 5 conclude the work. 

2. Review of principal component analysis network 

In this section, we first review the PCANet [56] , whose archi- 

tecture is shown in Fig. 1 and can be divided into three stages, 

including 10 steps. Suppose that we have N input training im- 

ages { I i , i = 1 , 2 , . . . , N } , I i ∈ R 

m ×n , and that the patch size (or two- 

dimensional filter size) of all stages is k 1 × k 2 , where k 1 and k 2 are 

odd integers satisfying 1 ≤ k 1 ≤ m , 1 ≤ k 2 ≤ n . We further assume 

that the number of filters in layer i is L i , that is, L 1 for the first 

stage and L 2 for the second stage. In the following, we describe 

the structure of PCANet in detail. 

Let the N input images { I i , i = 1 , 2 , . . . , N } be concatenated as 

follows: 

I = 

[
I 1 I 2 · · · I N 

]
∈ R 

m ×Nn . (1) 

2.1. The first stage of PCANet 

As shown in Fig. 1 , the first stage of PCANet includes the fol- 

lowing 3 steps: 

Step 1: the first patch sliding process. 

The images are padded to I ′ i ∈ R 

(m + k 1 −1) ×(n + k 2 −1) befor e slid- 

ing operation. Out-of-range input pixels are taken to be zero. This 

can ensure all weights in the filters reach the entire images. We 

use a patch of size k 1 × k 2 to slide each pixel of the i th image 

I ′ i ∈ R 

(m + k 1 −1) ×(n + k 2 −1) , then reshape each k 1 × k 2 matrix into a 

column vector, which is then concatenated to obtain a matrix 

X i = 

[
x i, 1 x i, 2 · · · x i,mn 

]
∈ R 

k 1 k 2 ×mn , i = 1 , 2 , . . . , N, (2) 

where x i,j denotes the j th vectorized patch in I i . 

Therefore, for all the input training images { I i , i = 1 , 2 , . . . , N } , 
we can obtain the following matrix 

X = 

[
X 1 X 2 · · · X N 

]
∈ R 

k 1 k 2 ×Nmn , (3) 

Step 2: the first mean remove process. 

In this step, we subtract patch mean from each patch and 

obtain 

X̄ i = 

[
x̄ i, 1 x̄ i, 2 · · · x̄ i,mn 

]
∈ R 

k 1 k 2 ×mn , i = 1 , 2 , . . . , N, (4) 
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