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In this paper, we develop algorithms to find small representative sets of nondominated points that are 

well spread over the nondominated frontiers for multi-objective mixed integer programs. We evaluate 

the quality of representations of the sets by a Tchebycheff distance-based coverage gap measure. The first 

algorithm aims to substantially improve the computational efficiency of an existing algorithm that is de- 

signed to continue generating new points until the decision maker (DM) finds the generated set satisfac- 

tory. The algorithm improves the coverage gap value in each iteration by including the worst represented 

point into the set. The second algorithm, on the other hand, guarantees to achieve a desired coverage 

gap value imposed by the DM at the outset. In generating a new point, the algorithm constructs territo- 

ries around the previously generated points that are inadmissible for the new point based on the desired 

coverage gap value. The third algorithm brings a holistic approach considering the solution space and 

the number of representative points that will be generated together. The algorithm first approximates 

the nondominated set by a hypersurface and uses it to plan the locations of the representative points. 

We conduct computational experiments on randomly generated instances of multi-objective knapsack, 

assignment, and mixed integer knapsack problems and show that the algorithms work well. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Mixed integer programs (MIPs) are encountered in many differ- 

ent fields. Practical MIPs need to be evaluated by multiple objec- 

tives in general. Multi-objective mixed integer programs (MOMIPs) 

have important practical value. Solving MOMIPs bring computa- 

tional challenges as finding each nondominated solution is hard 

and the nondominated frontier is at least partially continuous. 

MOMIPs have been addressed by a number of researchers. Sup- 

ported nondominated points can be obtained by optimizing a 

weighted sum of objectives with suitably chosen weights and they 

constitute a subset of all nondominated points. Özpeynirci and 

Köksalan (2010) and Przybylski, Gandibleux, and Ehrgott (2010) de- 

veloped methods to generate all extreme supported nondominated 

points for MOMIPs. Since the nondominated set is not finite, gener- 

ating all nondominated solutions is not possible and characterizing 

the nondominated set is not straightforward. 

Multi-objective integer programs (MOIPs) constitute a spe- 

cial case of MOMIPs where all variables are integers. MOIPs are 

encountered in many decision problems and have been widely 
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studied. The cardinality of the nondominated set is finite in MOIPs. 

Although it is possible to generate all nondominated points in 

MOIPs, there are some difficulties. Not only is generating each 

nondominated point hard, but also the number of nondominated 

points could become very large with increased problem size (see 

Ehrgott & Gandibleux, 20 0 0 ). 

Many existing approaches for MOIPs attempt to generate all 

nondominated points. Epsilon constraint, two-phase, and branch- 

and-bound methods are commonly utilized for this purpose (for 

example, see Delort & Spanjaard, 2010; Dhaenens, Lemesre, & Talbi, 

2010; Lemesre, Dhaenens, & Talbi, 2007; Przybylski, Gandibleux, & 

Ehrgott, 2008 ). It is not very practical to generate all nondomi- 

nated points for more than two objectives for even moderate-sized 

MOIPs. 

A number of approaches attempt to generate all nondomi- 

nated points by partitioning the solution space. Sylva and Crema 

(2004) partition the solution space by adding binary variables 

and constraints to exclude the already-generated points from 

the feasible set. Naturally, the problem becomes computation- 

ally more challenging with every new nondominated point. Özlen 

and Azizo ̆glu (2009) and Laumanns, Thiele, and Zitzler (2006) de- 

veloped methods to generate all nondominated points utilizing 

the epsilon-constraint method. Recently, more efficient algorithms 
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were developed by Lokman and Köksalan (2013) , Kirlik and Sayın 

(2014) , Ozlen, Burton, and MacRae (2014) , Dächert and Klamroth 

(2015) , Boland, Charkhgard, and Savelsbergh (2016) , and Boland, 

Charkhgard, and Savelsbergh (2017) to generate all nondominated 

points by partitioning the solution space effectively. Of these, 

Dächert and Klamroth (2015) , Boland et al. (2016) , and Boland et al. 

(2017) are restricted to three-objective problems while the others 

can be used for more objectives as well. 

Due to the difficulty of finding all nondominated points for 

realistic-sized MOIPs, many heuristics and metaheuristics have 

been developed. Ehrgott and Gandibleux (20 04, 20 08) review 

approximate and hybrid metaheuristics for multi-objective com- 

binatorial optimization (MOCO) problems (MOIPs having special 

structures). Although these heuristic methods are computationally 

efficient, the generated points are not necessarily nondominated 

and they do not provide any performance guarantees on the qual- 

ity level of the approximation set. 

In this paper, our goal is to find a reasonable number of well- 

distributed nondominated points to represent the nondominated 

set for MOMIPs. Sayın (20 0 0) proposed three measures: cover- 

age, uniformity and cardinality, to evaluate the quality of a sub- 

set of nondominated points. There have been a number of studies 

for finding a representative set to approximate the nondominated 

frontier. Sayın (2003) and Karasakal and Köksalan (2009) gen- 

erated discrete representations of the continuous nondominated 

frontiers for multi-objective linear programs (MOLPs). Sylva and 

Crema (2007) and Masin and Bukchin (2008) developed algorithms 

that are similar to each other and generate similar representative 

subsets of nondominated points for MOMIPs. Other algorithms that 

have been designed to generate all nondominated points for any 

number of objectives for MOIPs are not concerned with the quality 

of representing the nondominated set during the generation pro- 

cess. Therefore, the set of nondominated points generated until a 

certain iteration of the algorithm is unlikely to produce a good rep- 

resentation except by chance. It is not clear whether they can be 

modified to consider the quality of representation in the genera- 

tion of every new nondominated point. 

Generating a representative subset of nondominated points has 

two main benefits. Firstly, it is a computationally-efficient alter- 

native to characterizing the nondominated set, which is imprac- 

tical for MOMIPs. Additionally, a well-dispersed sample provides 

information about the layout of the nondominated set. An approx- 

imate knowledge of the distribution of solutions would provide the 

DM valuable information during the decision making process that 

might follow. 

In this paper, we develop exact methods that find nondomi- 

nated representative points either guaranteeing the quality of rep- 

resentation or searching for the best representation given the num- 

ber of representative points. We develop three methods that serve 

different purposes to generate high quality representative nondom- 

inated sets for MOMIPs. The paper is organized as follows: in 

Section 2 , we provide the necessary background. We develop our 

methods and provide computational results in Section 3 and con- 

clude in Section 4 . 

2. Background 

In this section, we provide the necessary background, define the 

performance measure we use, and develop the requisite theory. 

2.1. Definitions 

Consider the following problem: 

(MOMIP): 

“Max” z(x) = { z 1 ( x ) , z 2 ( x ) , . . . , z m 

( x ) } 
s.t. x ∈ X 

x v ∈ Z , ∀ v ∈ V 

x u ∈ R , ∀ u ∈ U 

where z i ( x ) is a continuous function of x denoting the i th 

objective function. We denote the feasible decision space as 

X and the image of X in the objective space as Z . X = 

{ x ∈ P : x v ∈ Z ∀ v ∈ V, x u ∈ R ∀ u ∈ U } , where P ⊆ R 

n is com- 

pact, V is the index set of integer decision variables, U is the index 

set of real-valued decision variables and n = | V | + | U| . The quota- 

tion marks are used since there does not exist a unique solution 

that is maximal in all objective functions. Without loss of general- 

ity, we assume we have m maximization-type objectives. 

Definition 1. x k ∈ X is an efficient solution if � x j ∈ X such that 

z i ( x 
j ) ≥ z i ( x 

k ) ∀ i and z i ( x 
j ) > z i ( x 

k ) for at least one i. If x k is effi- 

cient, then z ( x k ) is said to be nondominated. On the other hand, if 

there exists such an x j , then x k is said to be inefficient and z ( x k ) 

is said to be dominated. 

Definition 2. If ∃ x j ∈ X such that z i ( x 
j ) > z i ( x 

k ) ∀ i , then x k is said 

to be strictly inefficient and z ( x k ) is strictly dominated . If there ex- 

ists no such x j , then x k is weakly efficient and z ( x k ) is weakly non- 

dominated . 

Note that weakly efficient (nondominated) set contains all ef- 

ficient (nondominated) solutions and a set of special inefficient 

(dominated) solutions. It is a common misconception to think that 

this set consists of only the special inefficient (dominated) solu- 

tions, ignoring the fact that all efficient (nondominated) solutions 

are also in this set. 

Definition 3. Given Z̄ , ̃  Z ⊆ Z and ε ∈ R , Z̄ is said to ε–dominate ˜ Z 

if there exists z̄ ∈ Z̄ for each ˜ z ∈ 

˜ Z such that ˜ z i ≤ z̄ i + ε ∀ i , and for 

at least one ˜ z ∈ 

˜ Z there exists z̄ ∈ Z̄ such that ˜ z i < z̄ i + ε for at least 

one i . 

Let Z ND ⊆ Z be the nondominated set. 

Definition 4. Let z IP = (z IP 
1 

, z IP 
2 

, . . . , z IP m 

) be the ideal point where 

z IP 
i 

= max 
z ∈ Z 

z i . 

Definition 5. Let z NP = (z NP 
1 

, z NP 
2 

, . . . , z NP 
m 

) be the nadir point where 

z NP 
i 

= min 

z ∈ Z ND 

z i . 

2.2. Measure of representativeness 

We use the measure, additive epsilon-indicator, developed 

by Zitzler, Thiele, Laumanns, Fonseca, and Grunert Da Fonseca 

(2003) and also used by Masin and Bukchin (2008) to assess the 

representativeness of the generated subsets for minimization prob- 

lems. We adapt this measure for maximization-type objectives and 

refer to it as coverage gap in the rest of this paper. 

Definition 6. Let R ⊆Z be a representative subset and y = 

(y 1 , y 2 , . . . , y m 

) ∈ R denote a representative point. We denote r(z) = 

(r 1 ( z ) , r 2 ( z ) , . . . , r m 

( z )) ∈ R as the representative point of z ∈ Z

where: 

max 
1 ≤i ≤m 

(z i − r i ( z ) ) = min 

y ∈ R 

{ 

max 
1 ≤i ≤m 

(z i − y i ) 
} 

. 

Let αR ( z ) = min y ∈ R { max 1 ≤i ≤m 

(z i − y i ) } measure how well set R 

covers point z . Then, the coverage gap of R , αR , is determined by 

the worst represented point z ∗ (the point that has the maximum 

αR ( z ) value). That is, z ∗ = arg max z ∈ Z αR ( z ) and αR = αR ( z 
∗) . 

To clarify, consider the following example. 
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