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We introduce an efficient algorithm, called partition of unity extension or PUX, to construct 
an extension of desired regularity of a function given on a complex multiply connected 
domain in 2D. Function extension plays a fundamental role in extending the applicability of 
boundary integral methods to inhomogeneous partial differential equations with embedded 
domain techniques. Overlapping partitions are placed along the boundaries, and a local 
extension of the function is computed on each patch using smooth radial basis functions; 
a trivially parallel process. A partition of unity method blends the local extrapolations 
into a global one, where weight functions impose compact support. The regularity of the 
extended function can be controlled by the construction of the partition of unity function. 
We evaluate the performance of the PUX method in the context of solving the Poisson 
equation on multiply connected domains using a boundary integral method and a spectral 
solver. With a suitable choice of parameters the error converges as a tenth order method 
down to 10−14.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

This paper addresses the issue of how to numerically construct an extension of a function defined on a complex domain. 
Without prior acquaintance with the topic it could appear simple. However, adding requirements on the global regularity of 
the extended function it becomes a non-trivial task. Furthermore, it is often desirable that the extended function has com-
pact support and that it can be efficiently constructed. One important application for function extension is to extend the 
applicability of integral equation methods for solving partial differential equations (PDEs). Integral equation methods have 
been shown to be both highly accurate and efficient when solving homogeneous constant coefficient elliptic partial differ-
ential equations in complex geometry. Function extension is a key component in a framework for solving non-homogeneous 
elliptic PDEs, and furthermore to solve time-dependent equations such as the heat equation and extending from the solution 
of Stokes equations to Navier–Stokes equations [1–3].

The idea is to avoid solving the full linear elliptic inhomogeneous PDE, given on a complex domain, by splitting the 
problem into two. The right-hand side is extended to a geometrically simpler domain, such as a box, and as part of the 
full solution, a particular solution is computed on this simpler domain. The homogeneous problem is solved on the original 
domain with modified boundary conditions, such that the total solution is the sum of the two. This general idea has been 
used also for other numerical methods and this group of methods is often referred to as embedded boundary techniques. 
For simple geometries an arsenal of powerful solution methods are available, but their accuracy is often limited by the 
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global regularity of the extended function. Several different function extension methods, used in this context, have been 
suggested in recent years [4–9].

The approach to function extension suggested by Askham et al. [4] is based on solving an harmonic equation. Given f
on a domain �̄, use the values of f on the boundary of � as the Dirichlet data for the external Laplace problem

�w = 0 in R
2\ �, (1)

w = f on ∂�. (2)

Then a globally continuous extension f e of f is given by

f e(y) =
{

f (y), y ∈ �,

w(y), y ∈R
2\ �.

(3)

This problem is solved by an integral equation based method and the extension will be in C0, but will not have compact 
support. To obtain higher regularity the biharmonic equation can be solved instead of (1)–(2), or even polyharmonic.

In [6] by Stein et al. the unknown solution, instead of the forcing f , is extended and the extended problem is solved 
via an immersed boundary system of equations. The extension is defined as the solution to some high order PDE, which in a 
sense is similar to the method presented by Askham et al. Their respective work show the complexity of the problem and 
what price is considered reasonable to pay to obtain an extension. Moreover both observe that the accuracy of the solution 
to the associated PDE relies heavily on the regularity of said extension.

Another alternative, given by [9], is to extend the solution to the PDE, instead of the right hand side, from a previous 
timestep or iterate. This extension is used in a penalty term to approximately enforce Dirichlet boundary conditions and 
to force the solution to be the extension of the solution from the previous timestep in some penalty region. A function 
extension of global regularity k is created by matching normal derivatives of degree k of the given boundary data. The 
extension is expressed in a basis that is rapidly decaying with the distance to the boundary. Function extension can also 
be achieved by Fourier continuation methods: in 1D the domain of interest is embedded into a larger one and a smooth 
periodic extension is constructed, which yields an appropriate setting for spectral methods. Dimensional splitting is used for 
higher dimensional problems. See [7,8,10,5] and the references therein. The methods and the associated references included 
above is by no means a complete list of methods for function extension. In all mentioned cases above, no higher than a 
fourth order method is obtained for solving the Poisson equation.

In this paper, we present a new method, Partition of Unity Extension, or PUX, to compute a compactly supported extension 
of a function. We assume that the values of a function f are known at all points of a regular grid that fall inside a domain 
�, and we want to compute the values of the extended function on this regular grid outside of �. The domain � can be 
multiply connected. In the PUX method, overlapping circular partitions or patches are placed along the boundaries such that 
each is intersected by the boundary ∂� and a local extension is defined on each patch. A second layer of patches is placed 
outside of the first, on which the local values are defined to be zero. These zero patches enter the definition of the partition 
of unity function that is used to blend the local extensions into a global one, imposing compact support and regular decay 
to zero. The choice of functions used to build up the partition of unity function determines the regularity of the extended 
function.

The local extensions on the patches intersected by ∂� are determined using radial basis functions (RBFs). RBF centres 
are placed irregularly with the same distribution for each circular patch, and an RBF interpolant is determined via a least 
squares problem, using the values of f on the regular points inside �. The values of the local extension are then computed 
on the regular points inside the patch that fall outside of �. Always centring the patches at grid points of the regular grid, 
a matrix A can be precomputed once and be used for all patches. For each patch, an identification is made of which points 
are inside and outside � and a local least squares problem with the relevant rows of A is solved with the inside data, a 
trivially parallel task.

To assess the quality of a function extension it must be considered in its context of use, as there is no unique extension 
over the boundary of a domain. In this paper, we use it to solve the Poisson equation with an integral equation approach. 
Thus the results by Askham et al. in [4] are suitable for comparison.

The paper is organised as follows: in section 2 we detail how we solve the Poisson equation assuming an extension 
of the right hand side f is known. In section 3 we introduce the concepts and techniques from RBF interpolation and 
the partition of unity method that we need to introduce our method. The PUX method is presented in section 4, where a 
function extension is constructed. Thereafter follows section 5 with a discussion of sources of errors associated with function 
extension and solving the Poisson equation. Section 6 is a summary, combined with implementation details, for solving the 
Poisson equation with the techniques described in this paper. In section 7 we perform numerical experiments and carefully 
discuss parameter choices. Finally our conclusions and an outlook are presented in section 8.

2. The Poisson equation on irregular domains in a boundary integral method environment

To understand why a function extension is useful for solving linear elliptic PDEs, and why its construction is motivated 
to pursue, we sketch the solution procedure. Consider the Poisson equation with Dirichlet boundary conditions, stated as
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