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In a previous article [J. Comp. Phys. 357 (2018) 282–304] [4], the mixed mimetic spectral 
element method was used to solve the rotating shallow water equations in an idealized 
geometry. Here the method is extended to a smoothly varying, non-affine, cubed sphere 
geometry. The differential operators are encoded topologically via incidence matrices due 
to the use of spectral element edge functions to construct tensor product solution spaces in 
H(rot), H(div) and L2. These incidence matrices commute with respect to the metric terms 
in order to ensure that the mimetic properties are preserved independent of the geometry. 
This ensures conservation of mass, vorticity and energy for the rotating shallow water 
equations using inexact quadrature on the cubed sphere. The spectral convergence of errors 
are similarly preserved on the cubed sphere, with the generalized Piola transformation 
used to construct the metric terms for the physical field quantities.

Published by Elsevier Inc.

1. Introduction

In recent years there has been much attention given to the use of mimetic or compatible finite element methods for 
the modelling of geophysical flows. This work has been motivated by the desire to preserve conservation laws in order 
to mitigate against biases in the solution over long time integrations [1]. These mimetic methods are designed to pre-
serve the divergence and circulation theorems in the discrete form, as well as the annihilation of the gradient by the curl 
and the curl by the divergence. When appropriate solution spaces are chosen for the divergent, vector and rotational mo-
ments, this allows for the conservation of first (mass, vorticity) and higher (energy and potential enstrophy) moments in 
the discrete form [2–4]. Various classes of element types have been explored for this purpose, including Raviart–Thomas, 
Brezzi–Douglas–Marini and Brezzi–Douglas–Fortin–Marini elements [3,5–7]. Mimetic properties may also be recovered for 
standard collocated A-grid spectral elements [8] and primal/dual finite volume formulations [9].

When implemented on non-affine geometries, the convergence of errors may degrade for compatible finite element 
methods [10], due to the reduced order of the polynomials when scaled by non-constant metric terms. Several methods 
have been shown to rehabilitate the optimal convergence of Raviart–Thomas elements for the L2 function space [7,11,12]
by modifying how the metric terms are incorporated into the differential operators, however it is unclear if and how these 
methods are applicable to other families of compatible finite element methods.
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In the present article we extend previous work on the use of mixed mimetic spectral elements for geophysical flows [4], 
hereafter LPG18, to a non-affine cubed sphere geometry. The method uses the spectral element edge functions [13], which 
are specified to satisfy the Kronecker delta property with respect to their integrals between nodes, so as to exactly satisfy 
the fundamental theorem of calculus with respect to the standard nodal spectral element basis functions. Combinations of 
standard nodal and edge functions are then used to construct tensor product solution spaces in higher dimensions for which 
the differential operators may be defined in a purely topological manner via the use of incidence matrices [14–16]. These 
incidence matrices allow for the preservation of the divergence and circulation theorems, as well as the annihilation of the 
gradient by the curl and the curl by the divergence in the discrete form. The incidence matrices also commute with the 
metric transformations between computational and physical space, such that both the mimetic properties and the spectral 
convergence of errors are preserved on smoothly varying, non-affine geometries [14,16]. Indeed, for the spectral mimetic 
least squares method, optimal convergence has also been demonstrated for irregular meshes that do not vary smoothly or 
converge to an affine geometry [17].

In LPG18 the conservation and convergence properties of the mixed mimetic spectral element method for rotating shal-
low water flows were demonstrated both theoretically through formal proofs in the discrete form, and experimentally, 
through numerical experiments on idealized doubly periodic geometries. Here we extend these results to a non-affine cubed 
sphere geometry via the use of the generalized Piola transformation [6,18,19]. This demonstrates that both the conservation 
laws derived from the mimetic properties, and the spectral convergence of errors, are preserved for the smoothly varying, 
non-affine mesh of the cubed sphere without the need to rehabilitate the method through the modification of the discrete 
differential operators.

The remainder of this article proceeds as follows. In Section 2 the formulation of the mixed mimetic spectral element 
method will be briefly discussed. Section 3 will discuss the formulation of the metric terms and their commuting properties 
with respect to the differential operators. The solution of the rotating shallow water equations on the cubed sphere using 
mixed mimetic spectral elements will be discussed in Section 4. Section 5 will present results from some standard test cases 
demonstrating the preservation of optimal spectral convergence and conservation laws on the cubed sphere, and finally 
Section 6 will discuss the conclusions of this work and some future directions we intend to pursue with this research.

2. Mixed mimetic spectral elements

In this section we introduce the construction of the mixed mimetic spectral element method. For a more detailed dis-
cussion see LPG18, as well as previous work [13–16] and references therein.

2.1. One dimensional nodal and histopolant polynomials

The mixed mimetic spectral element method is built off two types of one-dimensional polynomials: one associated 
with nodal interpolation, and the other with integral interpolation (histopolation) [13,20]. Subsequently, these two types of 
polynomials will be combined to generate the family of two-dimensional polynomial basis functions used to discretize the 
system.

Consider the canonical interval I = [−1, 1] ⊂ R and the Legendre polynomials, L p(ξ) of degree p with ξ ∈ I . The p + 1

roots, ξi , of the polynomial (1 − ξ2)
dLp
dξ

are called Gauss–Lobatto–Legendre (GLL) nodes and satisfy −1 = ξ0 < ξ1 < · · · <

ξp−1 < ξp = 1. Let lp
i (ξ) be the Lagrange polynomial of degree p through the GLL nodes, such that

lp
i (ξ j) :=

{
1 if i = j

0 if i �= j
, i, j = 0, . . . , p . (1)

The explicit form of these Lagrange polynomials is given by

lp
i (ξ) =

p∏
k=0
k �=i

ξ − ξk

ξi − ξk
. (2)

Let qh(ξ) be a polynomial of degree p defined on I = [−1, 1] and qi = qh(ξi), then the expansion of qh(ξ) in terms of 
Lagrange polynomials is given by

qh(ξ) :=
p∑

i=0

qil
p
i (ξ) . (3)

Because the expansion coefficients in (3) are given by the value of qh in the nodes ξi , we refer to this interpolation as a 
nodal interpolation and we will denote the Lagrange polynomials in (2) by nodal polynomials. Using the nodal polynomials 
we can define another set of basis polynomials, ep

i (ξ), as
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