Information and Software Technology Xxx (XXXX) XXX—XXX

Contents lists available at ScienceDirect

IFORMATION
AND
SOFTWARE
TECHNOLOGY

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Development of a human error taxonomy for software requirements: A
systematic literature review

Vaibhav Anu™', Wenhua Hu™', Jeffrey C Carver‘, Gursimran S Walia™*, Gary Bradshaw*

@ Department of Computer Science, Montclair State University, Montclair, NJ, United States

® Department of Software Engineering and Game Development, Kennesaw State University, Marietta, GA, United States
© Department of Computer Science, The University of Alabama, Tuscaloosa, AL, United States

d Department of Psychology, Starkville, MS, United States

ARTICLE INFO ABSTRACT

Keywords: Background: Human-centric software engineering activities, such as requirements engineering, are prone to
Systematic review error. These human errors manifest as faults. To improve software quality, developers need methods to prevent
Requirements and detect faults and their sources.

?:gi‘;;;mrs Aims: Human error research from the field of cognitive psychology focuses on understanding and categorizing

the fallibilities of human cognition. In this paper, we applied concepts from human error research to the problem
of software quality.

Method: We performed a systematic literature review of the software engineering and psychology literature to
identify and classify human errors that occur during requirements engineering.

Results: We developed the Human Error Taxonomy (HET) by adding detailed error classes to Reason's well-
known human error taxonomy of Slips, Lapses, and Mistakes.

Conclusion: The process of identifying and classifying human error identification provides a structured way to
understand and prevent the human errors (and resulting faults) that occur during human-centric software en-
gineering activities like requirements engineering. Software engineering can benefit from closer collaboration

with cognitive psychology researchers.

1. Introduction

Software engineering, especially during the early phases, is a
human-centric activity. Software engineers must gather customer
needs, translate those needs into requirements, and validate the cor-
rectness, completeness, and feasibility of those requirements. Because
of the involvement of various people in this process, there is the po-
tential for human errors to occur. Cognitive Psychology researchers
have studied how people make errors when performing different types
of tasks. This line of research is called human error research. In this
paper, we apply the findings from human error research to analyze and
classify the types of human errors people make during the requirements
engineering process.

Because the software engineering literature often has competing
definitions for the same terms, we must clearly define our terminology.
Based on IEEE Standard 24,765 [13] (ISO/IEC/IEEE 24,765:2010), we
use the following definitions in this paper.

* Corresponding author.

e Error (also referred to as Human Error) — A mental error, i.e. the
failing of human cognition in the process of problem solving,
planning, or execution.

e Fault [or Defect] — The manifestation of an error recorded in a
software artifact.

® Failure — The incorrect execution of a software system, e.g. resulting
in a crash, unexpected operation, or incorrect output.

The chain from human error to fault to failure is not unbroken and
inevitable. Generally, developers either detect and correct faults
without investigating the underlying errors or they use software testing
to reveal system failures that they then repair. Nevertheless, because
many system failures originate in a human error, researchers need to
investigate how human errors can help in detecting and fixing software
faults and failures. By one estimate, software failures (which often find
their origination in human errors) cost $60 billion/year [27].

Practitioners in other domains, i.e. Aviation and Nuclear Power,

E-mail addresses: vaibhavanu.x@gmail.com (V. Anu), whu4@kennesaw.edu (W. Hu), carver@cs.ua.edu (J.C. Carver), gursimran.walia@ndsu.edu (G.S. Walia),

glb2@psychology.msstate.edu (G. Bradshaw).

1 Authors Anu and Hu are co-first authors and contributed equally to leading this paper.

https://doi.org/10.1016/j.infsof.2018.06.011

Received 13 October 2016; Received in revised form 21 May 2018; Accepted 21 June 2018

0950-5849/ © 2018 Published by Elsevier B.V.

Please cite this article as: Anu, V., Information and Software Technology (2018), https://doi.org/10.1016/j.infsof.2018.06.011

http://www.sciencedirect.com/science/journal/09505849
https://www.elsevier.com/locate/infsof
https://doi.org/10.1016/j.infsof.2018.06.011
https://doi.org/10.1016/j.infsof.2018.06.011
mailto:vaibhavanu.x@gmail.com
mailto:whu4@kennesaw.edu
mailto:carver@cs.ua.edu
mailto:gursimran.walia@ndsu.edu
mailto:glb2@psychology.msstate.edu
https://doi.org/10.1016/j.infsof.2018.06.011

V. Anu et al.

also faced similar problems in handling problems that result from
human errors. An error that originates in the mind of a pilot or of a
reactor operator can produce a fault that results in a plane crash or a
reactor core meltdown. In both cases, human errors create problems
measured not only in billions of dollars but also in lives lost. The work
of human error specialists has dramatically improved the safety and
efficiency of these domains. The improvement process entailed (1)
analyzing incident reports to identify the human error(s) made; (2)
finding common error patterns; and (3) organizing those errors into a
hierarchical error taxonomy. By examining the most frequent and costly
errors in the hierarchy, investigators developed and implemented
mediation strategies to reduce the frequency and severity of the errors
[7,26,30]. Our premise in this paper is that a similar approach can be
beneficial in software engineering.

Requirements engineering is largely human-centric. Requirement
analysts must interact with customers or domain experts to identify,
understand, and document potential system requirements. Numerous
studies have shown that it is significantly cheaper to find and fix re-
quirements problems during the requirements engineering activities
than during later software development activities. Therefore, it is im-
portant to focus attention on approaches that can help developers im-
prove the quality of the requirements and find requirements problems
early.

Human error research can be particularly beneficial during re-
quirements engineering. The high level of interaction and shared un-
derstanding among multiple stakeholders required at this step of the
software lifecycle can result in a number of problems. Applying human
error research to categorize the types of errors that occur during re-
quirements engineering will have two benefits. First, it will provide a
framework to help requirements engineers understand the types of er-
rors that can occur during requirement development. This awareness
should lead requirement engineers to be more careful. Second, it will
help reviewers ensure that requirements are of sufficient quality for
development to proceed.

Recognizing the potential benefit that a formalized error taxonomy
could provide to the requirements engineering process, a subset of the
current authors conducted a prior Systematic Literature Review to
identify errors published in the literature from 1990-2006. Using a
grounded theory approach [9], they organized those requirement errors
into a Requirement Error Taxonomy to support the detection and pre-
vention of the errors and resulting faults [28]. They performed that
review without reference to contemporary psychological theories of
how human errors occur. In this current review, we extend the previous
review in two ways. First, rather than developing a requirement error
taxonomy strictly ‘bottom-up’ with no guiding theory, we engage di-
rectly with a human error researcher and use human error theory to
ensure that we only include true human errors and organize those errors
based on a standard human error classification system from cognitive
psychology. Second, this review includes papers published since the
first review.

To guide this literature review, we focus on two research questions.

® RQI: What types of requirements engineering human errors does the
software engineering and psychology literature describe?

® RQ2: How can we organize the human errors identified in RQ1 into
a taxonomy?

o The primary contributions of this work are:

e Adapting human error research to a new domain (software quality
improvement) through interaction between software engineering
researchers and a human error researcher;

e Development of a systematic human error taxonomy for require-
ments to help requirement engineers understand and avoid common
human errors; and

® An analysis of the literature describing human errors in require-
ments engineering to provide insight into whether a community is
forming around common ideas.

Information and Software Technology xxx (xxxX) XXX—-XXX

The remainder of this paper is organized as follows. Section 2 pro-
vides a background on software quality and on human errors (from a
psychology perspective). Section 3 describes the systematic review
process and its execution. Section 4 reports the results of the review and
presents the human error taxonomy. Section 5 provides a discussion of
the results and the usefulness of the human error taxonomy. Finally,
Section 6 concludes the paper and describes future work.

2. Background

Formal efforts to improve software quality span decades [6,19].
This section briefly reviews some of these efforts as a preface to a more
comprehensive discussion of the role human error research can play in
identifying, understanding, correcting, and avoiding errors in software
engineering. Given the importance of identifying and correcting errors
and faults early in the software development process, we emphasize the
requirements engineering process.

2.1. Historical perspectives on software quality improvement

Initially, software quality improvement research focused on faults.
Because a fault that occurs early in software development may lead to a
series of later faults, researchers developed Root Cause Analysis (RCA)
[19,21] to identify the first fault in a (potentially lengthy) chain. In
RCA, developers trace faults to their origin to identify the triggering
fault. Then the developer can modify procedures to reduce the occur-
rence of faults or eliminate the original fault. The goal is to prevent the
first fault, thereby eliminating the entire fault chain.

Because RCA is time-consuming, researchers developed the
Orthogonal Defect Classification (ODC) to provide structure to the fault
tracing process [6]. Developers use ODC to classify faults and identify
the trigger that causes the fault to surface (not necessarily the cause of
fault insertion). This approach accommodates a large number of fault
reports and identifies the actions that revealed the fault. By focusing on
the action that caused the fault, the ODC avoids the tedious work of
tracing faults back to their origins and reduces the amount of time and
effort required, compared with RCA.

RCA and ODC are retrospective techniques in which the investigative
procedure begins with fault reports. Because the ODC relies on statis-
tical analyses to identify the source fault, it requires the presence of a
large and robust set of fault reports. As retrospective techniques, RCA
and ODC occur late in the development process, after errors and faults
have accumulated and are more expensive to fix. In addition, neither
approach helps identify the human error underlying the fault. Thus,
these approaches focus more on treating the symptoms (manifestations
of the error) rather than the underlying cause (i.e., the error).

Noting that it can be difficult to define, classify, and quantify re-
quirements faults, Lanubile, et al. shifted the emphasis from faults to
errors. They defined the term error as a fault or flaw in the human
thought process that occurs while trying to understand given informa-
tion, while solving problems, or while using methods and tools [17].
Such errors are the cause of faults. This shift is important because it
helps developers understand why the fault occurred. Because this ap-
proach addresses the underlying cause (i.e. the error) rather than the
symptoms (i.e. the faults), it is an advance over the RCA and ODC ap-
proaches.

Errors and faults have a complex relationship. One error may cause
several faults. Similarly, one fault may spring from different errors.
Consequently, it is not trivial to identify the error behind the fault.
Lanubile, et al. asked software inspectors to analyze the faults detected
during an inspection to determine the underlying cause, i.e., the error.
The inspectors then used the resulting list of errors to guide a re-in-
spection to detect additional faults related to those errors. This re-in-
spection produced only a moderate improvement in fault detection
[17].

This error abstraction methodology is also a retrospective process

Download English Version:

https://daneshyari.com/en/article/8953926

Download Persian Version:

https://daneshyari.com/article/8953926

Daneshyari.com

https://daneshyari.com/en/article/8953926
https://daneshyari.com/article/8953926
https://daneshyari.com

