
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

The WGB method to recover implemented architectural rules

Vanius Zapalowski⁎,a, Ingrid Nunesa,b, Daltro José Nunesa

a Instituto de Informática, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
bDepartment of Computer Science, Technische Universität Dortmund, Dortmund, Germany

A R T I C L E I N F O

Keywords:
Software architecture
Architectural rule
Source code dependency
Architecture recovery

A B S T R A C T

Context: The identification of architectural rules, which specify allowed dependencies among architectural
modules, is a key challenge in software architecture recovery. Existing approaches either retrieve a large set of
rules, compromising their practical use, or are limited to supporting the understanding of such rules, which are
manually recovered.

Objective: To propose and evaluate a method to recover architectural rules, focusing on those implemented in
the source code, which may differ from planned or conceptual rules.

Method: We propose the WGB method, which analyzes dependencies among architectural modules as a graph,
adding weights that correspond to the proposed module dependency strength (MDS) metric and identifies the set of
implemented architectural rules by solving a mathematical optimization problem. We evaluated our method
with a case study and an empirical study that compared rules extracted by the method with the conceptual
architecture and source code dependencies of six systems. These comparisons considered efficiency and effec-
tiveness of our method.

Results: Regarding efficiency, our method took 45.55 s to analyze the largest system evaluated. Considering
effectiveness, our method captured package dependencies as extracted rules with a reduction of 87.6%, on
average, to represent this information. Using allowed architectural dependencies as a reference point (but not a
gold standard), provided rules achieved 37.1% of precision and 37.8% of recall.

Conclusion: Our empirical evaluation shows that the implemented architectural rules recovered by our
method consist of abstract representations of (a large number of) module dependencies, providing a concise view
of dependencies that can be inspected by developers to identify occurrences of architectural violations and
undocumented rules.

1. Introduction

Software architecture recovery has been largely investigated to
support the development of software systems, which often have missing
or outdated architectural documentation [1]. This recovered informa-
tion helps understand the software structure as well as rules that govern
the interaction among its modules. The lack of (an updated) docu-
mented knowledge regarding the architecture causes a disorganized
software evolution, which leads to major maintenance problems [2,3].
For example, the introduction of architectural violations leads to the
known problems of architecture drift and architecture erosion [4].
Moreover, the inspection of implemented architectural rules may reveal
unplanned rules introduced by developers, which typically remain
undocumented [5]. Consequently, retrieving this kind of architectural
information mitigates the knowledge vaporization [6] problem.

The support that architecture recovery approaches provide varies in
nature. They can, for example, identify architectural modules [7–10] by

clustering software elements, e.g. classes, when the implemented soft-
ware structure is inconsistent with the code. With respect to archi-
tectural rules, visualizations [11,12] have been developed to help de-
velopers understand rules that are implemented in the code. Moreover,
other solutions aim to automatically recover implemented rules, but
they are restricted to limited scenarios. For example, rules mined by the
PR-Miner [13] tool are limited to coding rules among procedures and
functions implemented with the procedural paradigm, and the ap-
proach proposed by Hora et al. [14,15] focuses only on patterns related
to external APIs.

In this paper, we focus on recovering rules that specify allowed
dependencies between architectural modules. Such recovered rules are
those implemented, i.e. those reflecting what is actually present in the
code, which may be inconsistent with rules that are in developers’
mindset or documentation. Our proposal consists of a three-step
method, named the weighted-graph-based (WGB) method, which iden-
tifies implemented rules by means of the construction of a weighted

https://doi.org/10.1016/j.infsof.2018.06.012
Received 10 August 2017; Received in revised form 8 May 2018; Accepted 22 June 2018

⁎ Corresponding author.
E-mail addresses: vzapalowski@inf.ufrgs.br (V. Zapalowski), ingrid.nunes@inf.ufrgs.br (I. Nunes), daltro@inf.ufrgs.br (D.J. Nunes).

Information and Software Technology xxx (xxxx) xxx–xxx

0950-5849/ © 2018 Elsevier B.V. All rights reserved.

Please cite this article as: Zapalowski, V., Information and Software Technology (2018), https://doi.org/10.1016/j.infsof.2018.06.012

http://www.sciencedirect.com/science/journal/09505849
https://www.elsevier.com/locate/infsof
https://doi.org/10.1016/j.infsof.2018.06.012
https://doi.org/10.1016/j.infsof.2018.06.012
mailto:vzapalowski@inf.ufrgs.br
mailto:ingrid.nunes@inf.ufrgs.br
mailto:daltro@inf.ufrgs.br
https://doi.org/10.1016/j.infsof.2018.06.012


graph using as input source code dependencies and their posterior
analysis. In short, for every module pair, we calculate the module de-
pendency strength (MDS) metric, which represents how much a module
depends on another, considering its sub-modules and surrounding
modules. Therefore, our proposed metric is not limited to counting
method calls, but takes into account many factors, such as the number
of sibling modules and usage ratios. This metric is used as weights of a
graph in which nodes represent modules and arrows dependencies. This
graph has some of its arrows removed based on a pairwise analysis of
sets of modules, and then an optimization problem is solved to give the
recovered implemented architectural rules.

2. Definitions and problem

There are many ways of representing a software architecture and
specifying architectural rules. In our work, we assume that the archi-
tecture is decomposed into modules, which may be further refined into
sub-modules, leading to a module hierarchy in the form of a tree. This is
often the way that modules are implemented or expressed in a docu-
mented software architecture. Each (sub-)module may contain software
elements, e.g. classes. Architectural rules explicitly specify de-
pendencies between pairs of modules, each indicating allowed de-
pendencies between elements of the modules, e.g. a method call. The
representation of a software architecture is thus composed of a module
hierarchy (structured as a tree) and rules connecting (sub-)modules,
forming a graph.

Rules and dependencies are illustrated in Fig. 1, which shows an
architecture with three main layered modules, each with sub-modules.
Thick arrows represent architectural rules, indicating for example that
the Presentation module depends on the Business module, meaning that
any element of the former can depend on any element of the latter. We
represent such a rule, or module dependency, as

→Presentation Business.
Architectural rules have additional implications. First, rules con-

sider not only the elements that are within the module referred in the
rule, but also any element in the module hierarchy. This means that, for
example, any element of the Presentation’s sub-modules can depend on
any element of the Business’s sub-modules. Second, dependencies be-
tween non-represented sub-modules of a module are allowed. Thus,
dependencies between omitted sub-modules of the Business Objects
module are permitted. Finally, everything else is forbidden and, if oc-
curs, is an architectural violation, e.g. the dependency between the
Feature Z and Schema Z DAO modules shown in Fig. 1. We are aware
that there are many sophisticated languages to express more refined
constraints over architectural modules [16–18]. However, documented
architectural models are typically as simple as detailed in our descrip-
tion [19].

When a software system is implemented, it may have different,
possibly diverging, architecture representations. The first is the

representation that is expected to be in the code, referred to as con-
ceptual architecture. It may be (1) an architecture model that is docu-
mented as a planned architecture, (2) only available in the developers’
mindset, or (3) both—and these may be inconsistent if, for example, the
documentation is outdated. The second representation is the one that is
consistent with the source code, referred to as implemented architecture.
A possible model of the implemented architecture can consist of all the
dependencies that occur in the code among modules. However, even in
small-scale software projects, this would result in an illegible model,
due to low granularity level. Divergences between the conceptual and
implemented architectures can be either architectural violations or
undocumented rules.

Our goal in this work is to recover implemented architectural rules
using a given module hierarchy with elements assigned to modules as
well as dependencies between elements present in the source code. This
module hierarchy can be manually specified, derived from the use of
clustering techniques or an implemented software organization.
Modules to be documented in the software architecture match a certain
level of this organization, hierarchically structured as a tree, e.g. in
terms of packages. However, this organization may include super-
modules due to code conventions, like in Java, or sub-modules that are
too fine-grained to be represented in the architecture. In the remainder
of this paper, we adopt the implemented module hierarchy to exemplify
and evaluate our method because it does not require an input other
than the source code.

Given this module hierarchy, we must identify rules that reflect
dependencies in the code at the right level of granularity. This means
that rules must be expressed at the highest granularity level as possible. For
example, if there are many dependencies between the Business’s and
Data’s sub-modules, they must be abstracted to a rule →Business Data.
This abstraction has two implications, detailed as follows.

1. Implemented rules may capture hidden information, not expressed in
conceptual rules. Dependencies from the Presentation to the Business
module are, in fact, to the Service sub-module. Diverging from the
conceptual rule, the most appropriate implemented rule should be

→Presentation Service.
2. Rules associated with sparse dependencies must be fine-grained. Sparse

or infrequent dependencies are those that occur in the code but are
not frequent enough to be generalized to a coarse-grained rule, i.e.
in terms of super-modules. Such dependencies may be architectural
violations, e.g. dependencies from the Presentation’s to a Data’s sub-
module. Therefore, in this case, it is desired that these dependencies
are not abstracted to a general rule (e.g. →Presentation Data), but
remain fine-grained (e.g. →Feature X Schema Z DAO), so that it
can be identified as a violation, when recovered implemented ar-
chitectural rules are inspected by developers.

Considering these introduced definitions and specified problem, we
proceed to the presentation of our method proposed to recover im-
plemented architectural rules.

3. WGB method

Our WGB method chooses a set of architectural rules to represent an
implemented software architecture taking as input a given software module
organization (e.g., package structure) and dependencies among module
elements (e.g., classes). These recovered rules are a coarse-grained re-
presentation of the implemented architecture that are an architectural
view of the system. Our method is composed of three sequential steps:
(i) calculation of a metric that captures the dependency strength be-
tween every two modules, considering dependencies between elements
(Section 3.1); (ii) pairwise clusterization of dependencies based on this
metric, considering neighbor module levels (Section 3.2); and (iii) se-
lection of the set of rules that maximizes the dependency strength
without redundancy, which we assume as the correct rule granularity toFig. 1. Conceptual architectural rules vs. implemented dependencies.

V. Zapalowski et al. Information and Software Technology xxx (xxxx) xxx–xxx

2



Download English Version:

https://daneshyari.com/en/article/8953927

Download Persian Version:

https://daneshyari.com/article/8953927

Daneshyari.com

https://daneshyari.com/en/article/8953927
https://daneshyari.com/article/8953927
https://daneshyari.com

