
 

Accepted Manuscript

Diversity Driven Adaptive Test Generation for Concurrent Data
Structures

Linhai Ma, Peng Wu, Tsong Yueh Chen

PII: S0950-5849(18)30135-6
DOI: 10.1016/j.infsof.2018.07.001
Reference: INFSOF 6014

To appear in: Information and Software Technology

Received date: 7 August 2017
Revised date: 23 April 2018
Accepted date: 2 July 2018

Please cite this article as: Linhai Ma, Peng Wu, Tsong Yueh Chen, Diversity Driven Adaptive Test
Generation for Concurrent Data Structures, Information and Software Technology (2018), doi:
10.1016/j.infsof.2018.07.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.infsof.2018.07.001
https://doi.org/10.1016/j.infsof.2018.07.001


ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Diversity Driven Adaptive Test Generation for Concurrent Data Structures

Linhai Maa,b, Peng Wua,b,∗, Tsong Yueh Chenc

aState Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences
bUniversity of Chinese Academy of Sciences

cDepartment of Computer Science and Software Engineering, Swinburne University of Technology

Abstract

Context: Testing concurrent data structures remains a notoriously challenging task, due to the nondeterminism of multi-threaded
tests and the exponential explosion on the number of thread schedules.

Objective: We propose an automated approach to generate a series of concurrent test cases in an adaptive manner, i.e., the next
test cases are generated with the guarantee to discover the thread schedules that have not yet been activated by the previous test
cases.

Method: Two diversity metrics are presented to induce such adaptive test cases from a static and a dynamic perspective, re-
spectively. The static metric enforces the diversity in the program structures of the test cases; while the dynamic one enforces the
diversity in their capabilities of exposing untested thread schedules. We implement three adaptive test generation approaches for
C/C++ concurrent data structures, based on the state-of-the-art active testing engine Maple.

Results: We then report an empirical study with 9 real-world C/C++ concurrent data structures, which demonstrates the effi-
ciency of our test generation approaches in terms of the number of thread schedules discovered, as well as the time and the number
of tests required for testing a concurrent data structure.

Conclusion: Hence, by using diverse test cases derived from the static and dynamic perspectives, our adaptive test generation
approaches can deliver a more efficient coverage of the thread schedules of the concurrent data structure under test.

Keywords: Concurrent Data Structures, Test Case Diversity, Test Case Generation, Active Testing, Adaptive Random Testing

1. Introduction

Concurrent data structures are key components for the de-
velopment of concurrent software, because shared objects are
often implemented with concurrent data structures. A concur-
rent data structure encapsulates self-synchronization mechanisms
to coordinate the simultaneous accesses of multiple threads to a
shared object. Presumably concurrent operations (e.g., method
calls) of the shared object can be equivalently serialized to ac-
cess the shared object sequentially. This assumption eases the
development of concurrent software to a great extent, because
developers just need to write sequential programs separately
for individual threads without any reference to inter-thread syn-
chronization. To be precise, the term concurrent data structure
throughout the paper refers to a concurrent implementation of
a data structure (e.g,, a concurrent implementation of queue),
instead of its sequential specification (e.g., a first-in-first-out se-
quential specification). Object-oriented programming languages
have already provided typical concurrent data structures for multi-
threaded programming, such as the java.util.concurrent pack-
age in Java. Plenty of open-source or proprietary concurrent
data structures are also available to support the development
of concurrent applications in practice.

∗Corresponding author
Email addresses: mlh@ios.ac.cn (Linhai Ma), wp@ios.ac.cn (Peng

Wu), tychen@swin.edu.au (Tsong Yueh Chen)

Thus, the reliability of a concurrent data structure is vital to
the correctness of a concurrent program that uses it. However,
a concurrent data structure is no less error-prone than a concur-
rent program. Furthermore, testing a concurrent data structure
may raise more challenges than testing a concurrent program
because a concurrent data structure cannot run on its own. A
test case of a concurrent data structure is a multi-threaded pro-
gram that makes simultaneous accesses to the concurrent data
structure. Obviously, the test case space is infinite in general.
Therefore, it gives rise to a fundamental problem on the au-
tomated generation of effective multi-threaded test cases (i.e.,
concurrent programs) for concurrent data structures, let alone
the challenge due to the nondeterministic execution of a test
case and the exponential number of possible thread interleav-
ings.

Active testing has established a coverage-guided paradigm
for efficiently exploring the possible thread interleavings of a
concurrent program under test. Typically, the state-of-the-art
active testing tool Maple [1] works in two stages as follows:
profiling and active testing. At the profiling stage, the concur-
rent program is profiled by running on its own, and the resulting
concurrent executions are collected to discover the interleaving
instances that encompass the shared-memory accesses by the
multiple threads of the concurrent program. These include the
interleaving instances that have taken place during the profiling
executions, and the untested interleaving instances predicted

Preprint submitted to Information and Software Technology July 2, 2018



Download English Version:

https://daneshyari.com/en/article/8953931

Download Persian Version:

https://daneshyari.com/article/8953931

Daneshyari.com

https://daneshyari.com/en/article/8953931
https://daneshyari.com/article/8953931
https://daneshyari.com

