
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Fragment retrieval on models for model maintenance: Applying a multi-
objective perspective to an industrial case study

Francisca Pérez⁎, Raúl Lapeña, Jaime Font, Carlos Cetina
Universidad San Jorge. SVIT Research Group, Autovía, A-23 Zaragoza-Huesca Km.299, Zaragoza 50830, Spain

A R T I C L E I N F O

Keywords:
Conceptual models
Traceability links recovery
Bug localization
Feature location
Evolutionary algorithms

A B S T R A C T

Context: Traceability Links Recovery (TLR), Bug Localization (BL), and Feature Location (FL) are amongst the
most relevant tasks performed during software maintenance. However, most research in the field targets code,
while models have not received enough attention yet.
Objective: This paper presents our approach (FROM, Fragment Retrieval on Models) that uses an Evolutionary
Algorithm to retrieve the most relevant model fragments for three different types of input queries: natural
language requirements for TLR, bug descriptions for BL, and feature descriptions for FL.
Method: FROM uses an Evolutionary Algorithm that generates model fragments through genetic operations, and
assesses the relevance of each model fragment with regard to the provided query through a fitness configuration.
We analyze the influence that four fitness configurations have over the results of FROM, combining three ob-
jectives: Similitude, Understandability, and Timing. To analyze this, we use a real-world case study from our
industrial partner, which is a worldwide leader in train manufacturing. We record the results in terms of recall,
precision, and F-measure. Moreover, results are compared against those obtained by a baseline, and a statistical
analysis is performed to provide evidences of the significance of the results.
Results: The results show that FROM can be applied in our industrial case study. Also, the results show that the
configurations and the baseline have significant differences in performance for TLR, BL, and FL tasks. Moreover,
our results show that there is no single configuration that is powerful enough to obtain the best results in all
tasks.
Conclusions: The type of task performed (TLR, BL, and FL) during the retrieval of model fragments has an actual
impact on the results of the configurations of the Evolutionary Algorithm. Our findings suggest which config-
uration offers better results as well as the objectives that do not contribute to improve the results.

1. Introduction

Amongst the most common and relevant tasks in the Software
Engineering field, especially when maintaining software products, are
Traceability Links Recovery, Bug Localization, and Feature
Location [1–4]. To tackle these tasks, Information Retrieval (IR) tech-
niques, such as Latent Semantic Indexing (LSI) [5,6], have been used
successfully [7,8]. However, most research targets code [3,4,9], ne-
glecting other software artifacts such as models. Models raise the ab-
straction level using concepts that are much less bound to the under-
lying implementation and technology and are much closer to the
problem domain [10]. The practice of Model Driven Engineering has
proved to increase efficiency and effectiveness in software develop-
ment [10].

To increase the automation level when Traceability Links Recovery,

Bug Localization and Feature Location are performed over models, we
propose an approach named Fragment Retrieval on Models (FROM).
Our approach uses a Multi-Objective Evolutionary Algorithm to retrieve
the most relevant model fragments for different types of queries (nat-
ural language requirements for Traceability Links Recovery, bug de-
scriptions for Bug Localization, and feature descriptions for Feature
Location). To guide the Evolutionary Algorithm, we use three fitness
objectives: Model Similitude through Latent Semantic Indexing
(LSI) [5,6], Model Understandability through Model Size [11,12], and
Model Timing through the Defect Principle [13,14].

Moreover, we combine the three objectives into a total of four
configurations: (1) Similitude, (2) Similitude + Understandability, (3)
Similitude + Timing, and (4) Similitude + Understandability +
Timing. We analyze the impact of each configuration on the results of
the Evolutionary Algorithm for Traceability Links Recovery, Bug

https://doi.org/10.1016/j.infsof.2018.06.017
Received 5 September 2017; Received in revised form 23 June 2018; Accepted 23 June 2018

⁎ Corresponding author.
E-mail addresses: mfperez@usj.es (F. Pérez), rlapena@usj.es (R. Lapeña), jfont@usj.es (J. Font), ccetina@usj.es (C. Cetina).

Information and Software Technology xxx (xxxx) xxx–xxx

0950-5849/ © 2018 Elsevier B.V. All rights reserved.

Please cite this article as: Pérez, F., Information and Software Technology (2018), https://doi.org/10.1016/j.infsof.2018.06.017

http://www.sciencedirect.com/science/journal/09505849
https://www.elsevier.com/locate/infsof
https://doi.org/10.1016/j.infsof.2018.06.017
https://doi.org/10.1016/j.infsof.2018.06.017
mailto:mfperez@usj.es
mailto:rlapena@usj.es
mailto:jfont@usj.es
mailto:ccetina@usj.es
https://doi.org/10.1016/j.infsof.2018.06.017


Localization, and Feature Location. In order to carry out this analysis,
we use the models, natural language requirements, bug descriptions,
and feature descriptions, all of them from a real-world case study
provided by our industrial partner, Construcciones y Auxiliar de
Ferrocarriles (CAF),1 which is a worldwide leader in train manu-
facturing.

We record the results of the Evolutionary Algorithm for each con-
figuration and the baseline for each type of query in terms of recall,
precision, and F-measure. Also, results are compared against those
obtained by a baseline in order to put FROM in perspective of previous
works. The baseline retrieves model fragments using model compar-
isons among models instead of using an evolutionary algorithm or LSI.
Our findings reveal that there is not a unique configuration of objec-
tives that retrieves the best results for all of queries. In other words, the
usage of different fitness objectives configurations is required to opti-
mize the results of the Evolutionary Algorithm for either Traceability
Links Recovery, Bug Localization, or Feature Location. In addition, we
provide evidences of the significance of the results by means of statis-
tical analysis.

The rest of the paper is structured as follows: Section 2 presents a
motivating example. Section 3 presents our approach. Section 4 de-
scribes the evaluation, the results, and the statistical analysis. Section 5
discusses the results. Section 6 presents the threats to validity. Section 7
reviews the related work. Finally, Section 8 concludes the paper.

2. Motivating example

Despite Model-Driven Development has not had the expected
widespread success so far, major players in the software engineering
field (i.e., tool vendors, researchers, and enterprise software devel-
opers) foresee a broad adoption of model-driven techniques because of
scenarios that demand more abstract approaches than mere
coding [10]. Fostering modeling efforts brings benefits in industrial
contexts in order to improve productivity, while ensuring quality and
performance [10].

In a model-driven industrial context, companies tend to have a
myriad of products with large and complex models behind. The models
are created and maintained over long periods of time by different
software engineers, and the engineers in charge of the maintenance
tasks (Traceability Links Recovery, Bug Localization, and Feature
Location) often lack knowledge over the entirety of the product details.
Under these conditions, maintenance tasks consume high amounts of
time and effort, without guaranteeing good results. Our industrial
partner reported performing the maintenance tasks manually at least 25
times per week, costing them a total monthly amount of working time
ranging from 43.3 to 66.7 h.

Fig. 1 depicts a model example, taken from a real-world train,
specified using the Domain Specific Language (DSL) that formalizes the
train control and management of the products manufactured by our
industrial partner. The DSL has the expressiveness required to describe
both the interaction between the main pieces of installed equipment,
and the non-functional aspects related to regulation. It will be used
through the rest of the paper to present a running example. For the sake
of understandability and legibility, and due to intellectual property
rights concerns, we present an equipment-focused simplified subset of
the DSL.

Specifically, the example of the figure presents a converter assistance
scenario where two pantographs (High Voltage Equipment) collect energy
from the overhead wires, and send it to their respective circuit breakers
(Contactors), which in turn send it to their independent Voltage
Converters. The converters then power their assigned Consumer
Equipment: the HVAC on the left (air conditioning system), and the PA
(public address system) and CCTV (television system) on the right.

The elements of Fig. 1 highlighted in gray conform an example
model fragment, including one circuit breaker that connects Converter
2 to a Consumer Equipment assigned to Converter 1. This model frag-
ment is the realization of the ‘converter assistance’ feature, which al-
lows the passing of current from one converter to equipment assigned to
its peer for coverage in case of overload or failure of the first converter.

A model fragment (which always belongs to a parent model) is
encoded as a string of binary values that contains as many positions as
elements in the parent model, where each position in the string has two
possible values: 0 in case the element does not appear in the fragment,
or 1 in case the element does appear in the fragment. In Fig. 1, elements
Q, R, and S conform the model fragment, so the corresponding values
are set to ‘1’ in its binary string representation.

Although it may appear easy to locate the ‘converter assistance’
feature in the model, it becomes very complex in the models of our
industrial partner where each train unit is specified through several
thousand elements. According to our industrial partner, software en-
gineers who belonged to the original team of modelers and who work
on a monthly basis with the product involved in the example, are able
to locate the feature in around 26 min. Another engineer, not related to
the project but with knowledge of the products in the company, spent
34 min on the same task. Finally, two newcomer modelers spent around
40 min of combined work until they fulfilled the task, but they did so in
a non-accurate manner. Considering these numbers, an approach that
automatically retrieves model fragments is strongly needed.

3. Approach

The goal of the presented approach, FROM (Fragment Retrieval On
Models), is to use an Evolutionary Algorithm to retrieve model frag-
ments for Traceability Links Recovery, Bug Localization, and Feature
Location. In addition, we use different combinations of fitness

Fig. 1. Example of model and model fragment.

1 www.caf.net/en.

F. Pérez et al. Information and Software Technology xxx (xxxx) xxx–xxx

2

https://www.caf.net/en


Download English Version:

https://daneshyari.com/en/article/8953933

Download Persian Version:

https://daneshyari.com/article/8953933

Daneshyari.com

https://daneshyari.com/en/article/8953933
https://daneshyari.com/article/8953933
https://daneshyari.com

