
 

Accepted Manuscript

A Case Study on Software Vulnerability Coordination

Jukka Ruohonen, Sampsa Rauti, Sami Hyrynsalmi, Ville Leppänen

PII: S0950-5849(17)30511-6
DOI: 10.1016/j.infsof.2018.06.005
Reference: INFSOF 6003

To appear in: Information and Software Technology

Received date: 26 January 2018
Revised date: 10 June 2018
Accepted date: 16 June 2018

Please cite this article as: Jukka Ruohonen, Sampsa Rauti, Sami Hyrynsalmi, Ville Leppänen, A Case
Study on Software Vulnerability Coordination, Information and Software Technology (2018), doi:
10.1016/j.infsof.2018.06.005

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.infsof.2018.06.005
https://doi.org/10.1016/j.infsof.2018.06.005


ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

A Case Study on Software Vulnerability Coordination

Jukka Ruohonena,∗, Sampsa Rautia, Sami Hyrynsalmia,b, Ville Leppänena

aDepartment of Future Technologies, University of Turku, FI-20014 Turun yliopisto, Finland
bPori Department, Tampere University of Technology, P.O. Box 300, FI-28101 Pori, Finland

Abstract

Context : Coordination is a fundamental tenet of software engineering. Coordination is required also for identifying
discovered and disclosed software vulnerabilities with Common Vulnerabilities and Exposures (CVEs). Motivated by
recent practical challenges, this paper examines the coordination of CVEs for open source projects through a public
mailing list.

Objective: The paper observes the historical time delays between the assignment of CVEs on a mailing list and the
later appearance of these in the National Vulnerability Database (NVD). Drawing from research on software
engineering coordination, software vulnerabilities, and bug tracking, the delays are modeled through three dimensions:
social networks and communication practices, tracking infrastructures, and the technical characteristics of the CVEs
coordinated.

Method : Given a period between 2008 and 2016, a sample of over five thousand CVEs is used to model the delays with
nearly fifty explanatory metrics. Regression analysis is used for the modeling.

Results: The results show that the CVE coordination delays are affected by different abstractions for noise and
prerequisite constraints. These abstractions convey effects from the social network and infrastructure dimensions.
Particularly strong effect sizes are observed for annual and monthly control metrics, a control metric for weekends, the
degrees of the nodes in the CVE coordination networks, and the number of references given in NVD for the CVEs
archived. Smaller but visible effects are present for metrics measuring the entropy of the emails exchanged, traces to
bug tracking systems, and other related aspects. The empirical signals are weaker for the technical characteristics.

Conclusion: Software vulnerability and CVE coordination exhibit all typical traits of software engineering coordination
in general. The coordination perspective elaborated and the case studied open new avenues for further empirical
inquiries as well as practical improvements for the contemporary CVE coordination.

Keywords: vulnerability, open source, coordination, social network, CVE, CWE, CVSS, NVD, MITRE, NIST

1. Introduction

Software bugs have a life cycle.1 In a relatively typical
life cycle, a bug is first introduced during development with
a version control system, then reported in a bug tracking
system, and then again fixed in the version control sys-
tem. Also software security bugs, or vulnerabilities, follow
a similar life cycle. Unlike conventional bugs, however,
vulnerabilities often require coordination between multiple
parties. Coordination is visible also during the identifica-
tion and archiving of vulnerabilities with unique CVEs.

There are four ways to obtain these universally recog-
nized vulnerability identifiers. For obtaining a CVE, (a) an
affiliation with an assignment authority (such as Mozilla or

∗Corresponding author.
Email address: juanruo@utu.fi (Jukka Ruohonen)

1 This paper is a rewritten and extended version of an earlier
conference paper [95] presented at IWSM Mensura 2017.

Microsoft) is required, but coordination may be done also
by (b) contacting such an authority, making (c) a direct
contact to the MITRE corporation, or (d) using alternative
channels for public coordination [100]. During the period
observed, the public channel referred to the oss-security
mailing list. The typical workflow on the list resembled the
simple communication pattern illustrated in Fig. 1.

Listxy MITRE NVD

“There is a

vulnerability...”

“Use CVE-2016-6526”

(a) (b)

Time

Figure 1: Coordination via oss-security (2008 – 2016)

Preprint submitted to Elsevier June 16, 2018



Download English Version:

https://daneshyari.com/en/article/8953938

Download Persian Version:

https://daneshyari.com/article/8953938

Daneshyari.com

https://daneshyari.com/en/article/8953938
https://daneshyari.com/article/8953938
https://daneshyari.com

