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ARTICLE INFO ABSTRACT

An analytical procedure for dynamic stability of CFST column accounting for the creep of concrete core is
proposed. The long-term effect of creep of concrete core is formulated based on the creep model by the ACI 209
committee and the age-adjusted effective modulus method (AEMM). The equations of boundary frequencies
accounting for the effects of concrete creep are derived by the Bolotin's theory and solved as a quadratic ei-
genvalue problem. The effectiveness of the proposed method and the characteristics of time-varying distribution
of instability regions are numerically surveyed. It is shown that the CFST column becomes dynamically unstable
even when the sum of the sustained static load and the amplitude of the dynamic excitation is much lower than
the static instability load. It is also found that due to the time effects of concrete creep under the sustained static
load, the same excitation, that cannot induce dynamic instability in the early stage of sustained loading, can
induce the dynamic instability in a few days later. The critical amplitude and frequency of the dynamic ex-
citation can decrease by 6% and 3% in 5 days, and 11% and 6% in 100 days.
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1. Introduction

Steel hollow sections are very efficient in resisting compression
forces, and filling these sections with concrete greatly enhances the
load-carrying capacity [1,2]. The concrete-filled steel tubular (CFST)
structure possesses many mechanic benefits, such as high strength and
fire resistances, favorable ductility and large energy absorption capa-
cities, so the CFST members are widely used in modern structures [3].
Moreover, with the advancement in the strength resistance and con-
struction techniques of CFST column, slender CFST columns are fre-
quently adopted to support the roofs of industrial plants, the decks of
railways and the floors of multistory buildings [4].

It is known when a slender column is subject to an axial compres-
sion, it could fail owing to lateral instability [5]. The instability of
slender CFST columns under axial static compression has been experi-
mentally and numerically studied by many researchers [4,6-8]. These
studies have shown that slender CFST columns are prone to global
buckling under static loading. In addition to the static loading, the
service loads of slender CFST members also involve the dynamic
loading. For example, the slender CFST piers in modern bridges are
subject to the dynamic vehicle loading, and the high CFST pillars sup-
porting large span roofs are loaded by dynamic wind loading. The
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behavior of CFST columns subjected to cycles of compressive loading
has also been reported by many researchers [9-11]. Under a sustained
centric axial static load, the concrete core of a CFST column creeps with
the time and the creep of the concrete core may change the lateral
stiffness and the lateral natural frequency of the CFST column sig-
nificantly. If the column under the sustained load is further excited by
an axial dynamic excitation at some stage, the column may suddenly
lose its stability laterally due to dynamic resonance when certain re-
lationships between the frequency of excitation and the natural fre-
quency of the column are satisfied and the amplitudes of the excitation
are sufficiently high. Because the creep of the concrete core develops
with the time and changes the lateral natural frequency, the relation-
ships between the frequency of the excitation and the natural frequency
of the column and the required amplitude of the excitation inducing the
dynamic instability of the CFST column may change greatly with the
time. Such dynamic instability may occur even when the sum of the
amplitude of the excitation and the sustained static load is much
smaller than the static instability load of the column.

Meanwhile, the engineering structures are commonly subject to
sustained static loads and sudden dynamic excitations [12,13]. Since
the mechanical property of the concrete core is time-dependent due to
creep when it is under a sustained load, the dynamic stability of a CFST
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column under dynamic excitation would be affected by the loading time
difference between the first static loading and the dynamic excitation.
However, there is no knowledge about how the creep of the concrete
core influences the dynamic stability of a CFST column available in the
literature hitherto. To ensure that CFST columns under sustained static
loads and sudden dynamic excitations do not suddenly lost their sta-
bility, it is much needed to investigate the effects of the creep of the
concrete core on the dynamic stability of CFST columns.

This study, therefore, is devoted to establishing an analytical pro-
cedure for the time-dependent dynamic stability analysis of slender
CFST columns accounting for the creep of the concrete core. The
column under a sustained static load and suddenly subjected to a dy-
namic excitation is considered. The age-adjusted effective modulus
method (AEMM) is used to describe the effect of the creep on the ef-
fective modulus of the concrete and the time-dependent model of
concrete creep of the ACI committee 209 [14] is adopted in the in-
vestigation. Based on these, the differential equation of lateral motion
of the CFST column under the dynamic excitation is derived. The
equations of boundary frequencies are then established by the Bolotin's
method and they are solved to determine the boundaries of regions of
dynamic instability. Finally, the effectiveness of the proposed method
and the characteristics of time-dependent dynamic stability of CFST
columns accounting for the creep of the concrete core are discussed by
elaborate numerical examinations.

2. Creep of concrete core under sustained static load

The aging property of the concrete was firstly noticed about 110
years ago, and a large amount of literature have been concentrated on
this subject, such as the books by Bazant [5], Neville [15] and Gilbert
[16]. The final total strain of the concrete at time infinity could be
several times the initially instantaneous strain, so the analysis over-
looking the time effect might extraordinarily underestimate the load
effect in the concrete or concrete-composite structures [17-19]. The
gradual development of strains in the sustained loaded concrete is due
to the creep and shrinkage of the concrete [16]. The creep and
shrinkage strains of CFST columns with various cross-sectional shapes
and concrete types were widely tested [20-22] and numerically com-
puted [23-25]. It was found that the shrinkage of the concrete in CFST
columns is very small and negligible owing to the prevention of
moisture egress in a seated environment [25,26].

This study assumes that the CFST column is under a centric axial
sustained static load for some time and then is suddenly subjected to a
centric axial dynamic excitation for a short period. Under the sustained
axial load, the effective modulus of the concrete changes with the time
due to the creep of the concrete core. The age-adjusted effective mod-
ulus method [27] is adopted in this investigation. According to the
method, the effective modulus of concrete E,. at the time t; is given by

Ec (TO)

E (tl, TO) =
« 1+ x (4, )9 (s T)

(€]
where E.(z() represents the elastic modulus of concrete at the time 7y of
first loading; ¢(t1,70) is the creep coefficient and y(t1,70) is the aging
coefficient.

The time-related creep coefficient ¢(t;,79) can be determined ac-
cording to the long-term model proposed by the ACI committee 209
[14].
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where (t;-79) denotes the duration of loading (in days); ¢*(zo) is the
final creep coefficient. According to the existing creep test results
[21,28], the final creep coefficient ¢* = 2.29 is used here.

Additionally, the aging coefficient y (t;,70) can be computed by the
empirical expression [16,29].
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Therefore, for a CFST column under sustained static loading from
the time 7o, when the column is dynamically excited at the time t;, the
effective modulus of concrete at time t; can be computed by Egs.
(1)-(5) for the dynamic stability analysis of the CFST column under a
dynamic excitation starting at the time ;.

3. Dynamic stability analysis accounting for creep of concrete
core

3.1. Governing equation of dynamic stability

A simply-supported CFST column is initially subjected to a sustained
axial concentric static load Py from the time 7, and then subjected to an
additional dynamical excitation from a time t; (t; > 7o), as shown in
Fig. 1. Without loss of generality, the dynamic excitation is considered
as a harmonic type excitation P(t) = Py + B cos 6t with the period
T = 27/6, where Py is the sustained static load, and P, and 6 denote the
amplitude and circular frequency of dynamic excitations.

For a straight column subject to an axial excitation, it would vibrate
in the axial direction. However, when certain relationships between the
frequency and amplitude of the excitation and the lateral natural fre-
quency of the column are satisfied, the column may suddenly vibrate
laterally and lose its stability in a dynamic resonance instability mode
[30-34]. The initial and deformed configurations of CFST column
during dynamic instability is shown in Fig. 1a. The length of column is
L, and the lateral displacement of column is represented by u(x,t),
where t is the time and x is the coordinate along the length of column.
The cross section of column consisted of a steel tube and a concrete core
is shown in Fig. 1b.

Forces acting on the infinitesimal element dx in the deformed po-
sition of the column are shown in Fig. 1c. These forces include the in-
ertia force m.9%u/ot* and the viscous damping force c(x)ou/ot, where m,
is the equivalent mass per unit length of the column and c(x) is a
damping constant; the axial force N, the shear force V and the moment
M at the bottom of the element; and the axial force N+ (0N/0x)dx, the
shear force V+ (0V/0x)dx, and the moment M+ (0M/dx)dx on the top
of the element. The inertial moment caused by the angular acceleration
of the element is neglected.

The following assumptions are adopted for the dynamic stability
analysis of CFST columns [28,35,36]: (1) the size of the cross section of
the CFST column is much smaller than the length of the column such
that the column is sufficiently slender; (2) oscillation of CFST column is
small and the deformation is linearly elastic, which satisfies the Euler-
Bernoulli hypothesis on that the cross section remains plane and per-
pendicular to the column axis during deformation; (3) the concrete core
and the steel tube of the CFST column are fully bonded; and (4) the
flexural stiffness of the CFST column is regarded as constant along the
CFST column. Because the axial rigidity of the CFST column is much
higher than its lateral rigidity, the influence of the axial vibration on the
lateral vibration is negligible and the internal axial force is equal to the
sum of the sustained static load and the external axial excitation.

Based on the assumptions, considering the forces acting on the in-
finitesimal element shown in Fig. 1, the equation of motion for the
column be derived as
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