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Abstract

In this paper we consider the field of local times of a discrete-time Markov chain on a general state
space, and obtain uniform (in time) upper bounds on the total variation distance between this field and the
one of a sequence of n i.i.d. random variables with law given by the invariant measure of that Markov chain.
The proof of this result uses a refinement of the soft local time method of Popov and Teixeira (2015).
c⃝ 2017 Elsevier B.V. All rights reserved.
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1. Introduction

The purpose of this paper is to compare the field of local times of a discrete-time Markov
process with the corresponding field of i.i.d. random variables distributed according to the
stationary measure of this process, in total variation distance. Of course, local times (also
called occupation times) of Markov processes is a very well studied subject. It is frequently
possible to obtain a complete characterization of the law of this field in terms of some Gaussian
random field or process, especially in continuous time (and space) setup. The reader is probably
familiar with Ray–Knight theorems as well as Dynkin’s and Eisenbaum’s isomorphism theorems;
cf. e.g. [12,14]. One should observe, however, that these theorems usually work in the case when
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the underlying Markov process is reversible and/or symmetric in some sense, something we do
not require in this paper.

To explain what we are doing here, let us start by considering the following example: let
(X j ) j≥1 be a Markov chain on the state space Σ = {0, 1}, with the following transition
probabilities: P[Xn+1 = k | Xn = k] = 1 − P[Xn+1 = 1 − k | Xn = k] =

1
2 + ε for

k = 0, 1, where ε ∈ (0, 1
2 ) is small. Clearly, by symmetry, ( 1

2 ,
1
2 ) is the stationary distribution

of this Markov chain. Next, let (Y j ) j≥1 be a sequence of i.i.d. Bernoulli random variables with
success probability 1

2 . What can we say about the distance in total variation between the laws of
(X1, . . . , Xn) and (Y1, . . . , Yn)? Note that the “naı̈ve” way of trying to force the trajectories to be
equal (given X1 = Y1, use the maximal coupling of X2 and Y2; if it happened that X2 = Y2, then
try to couple X3 and Y3, and so on) works only up to n = O(ε−1). Even though this method is
probably not optimal, in this case it is easy to obtain that the total variation distance converges
to 1 as n → ∞. This is because of the following: consider the event

Ξ Z
=

{1
n

n−1∑
j=1

1{Z j =Z j+1} >
1
2

+
ε

2

}
,

where Z is X or Y . Clearly, the random variables 1{Z j =Z j+1}, j ∈ {1, . . . , n − 1} are
i.i.d. Bernoulli, with success probabilities 1

2 + ε and 1
2 for Z = X and Z = Y correspondingly.

Therefore, if n ≫ ε−2, it is elementary to obtain that P[Ξ X ] ≈ 1 and P[Ξ Y ] ≈ 0, and so the
total variation distance between the trajectories of X and Y is almost 1 in this case.

So, even in the case when the Markov chain gets quite close to the stationary distribution just
in one step, usually it is not possible to couple its trajectory with an i.i.d. sequence, unless the
length of the trajectory is relatively short. Assume, however, that we are not interested in the
exact trajectory of X or Y , but rather, say, in the number of visits to 0 up to time n. That is,
denote

L Z
n (0) =

n∑
j=1

1{Z j =0}

for Z = X or Y . Are L X
n (0) and LY

n (0) close in total variation distance for all n?
Well, the random variable LY

n (0) has the binomial distribution with parameters n and 1
2 , so it

is approximately Normal with mean n
2 and standard deviation

√
n

2 . As for L X
n (0), it is elementary

to obtain that it is approximately Normal with mean n
2 and standard deviation

√
n
( 1

2 + O(ε)
)
.

Then, it is also elementary to obtain that the total variation distance between these two Normals
is O(ε), uniformly in n (indeed, that total variation distance equals the total variation distance
between the Standard Normal and the centered Normal with variance (1 + O(ε))2; that distance
is easily verified to be of order ε). This suggests that the total variation distance between L X

n (0)
and LY

n (0) should be also of order ε uniformly in n. Observe, by the way, that the distribution of
the local times of a two-state Markov chain can be explicitly written (cf. [2]), so one can obtain
a rigorous proof of the last statement in a direct way, after some work.

Let us define the local time of a stochastic process Z at site x at time n as the number of visits
to x up to time n:

L Z
n (x) =

n∑
j=1

1{Z j =x}

(sometimes we omit the upper index when it is clear which process we are considering). The
above example shows that, if one is only interested in the local times of the Markov chain (and
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