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a b s t r a c t

I provide an alternative characterization of a “standard of rotation” in the context of classical spacetime
structure that does not refer to any covariant derivative operator.

© 2017 Elsevier Ltd. All rights reserved.

Following recent work by Simon Saunders (2013) and Eleanor
Knox (2014), a flurry of papers have addressed the question of how
to understand the geometry presupposed by Newtonian gravita-
tional theory, particularly in light of Corollary VI to the Laws of
Motion in Newton's Principia (Dewar, 2017; Teh, 2017; Wallace,
2016a, 2017; Weatherall, 2016c).1 At issue has been the relation-
ship between (1) Saunders' proposal that one can (and should) take
the “correct” geometry for Newtonian gravitational theory to be
that of what Earman (1989) called “Maxwellian spacetime”, and
whichmore recently has been called “Newton-Huygens spacetime”
(Saunders, 2013) or “Maxwell-Huygens spacetime” (Weatherall,
2016c), and (2) Knox's proposal that Corollary VI should motivate
a move to geometrized Newtonian gravitation (i.e., Newton-Cartan
theory).

One (somewhat tangential) thread of this discussion has con-
cerned how to best characterize Maxwellian spacetime, which is
supposed to be endowed with spatial and temporal metric struc-
ture and with a standard of rotation for smooth vector fields, but
which is not supposed to pick out a preferred class of inertial

trajectoriesdi.e., Maxwellian spacetime carries something less
than a full affine structure. When Earman (1989) introduced
Maxwellian spacetime, he defined it using an equivalence class of
covariant derivative operators all agreeing on which smooth
timelike vector fields are non-rotating2; Weatherall (2016c) adop-
ted the same definition. But one might worry that this approach is
problematic. In particular, definingMaxwellian spacetime by taking
an equivalence class of derivative operators makes reference to
structure that one does not attribute to spacetime. Manipulating a
standard of rotation then involves choosing some derivative oper-
ator from the equivalence class, performing a calculation with that
derivative operator, and then showing that the result of the
calculation, if judiciously performed, is independent of the choice.
But in such cases, one often encounters intermediate terms that do
depend on the choice of derivative operator. How are we to inter-
pret such termsdespecially when they concern objects that
represent physical magnitudes? The problem becomes particularly
acute in light of Saunders' argument that Maxwellian spacetime
maywell be the correct setting for Newtonian gravitation. If so, one
would like to be able to reason about quantities in Maxwellian
spacetime without needing to introduce further structure.

A second (related) worry is implicit in recent remarks by
Wallace (2016b), who points out that there is a more direct “Klei-
nian” characterization of the intended structure that, one might

E-mail address: weatherj@uci.edu.
1 Of course, there is an older literature addressing the significance of Corollary

VIdsee, in particular, Stein (1967, 1977) and DiSalle (2008). There is also a literature
on the closely related question of how to understand the relationship between
“ordinary” Newtonian gravitation and “geometrized” Newtonian gravitation, also
known as Newton-Cartan theory: see, for instance, Glymour (1980), Knox (2011),
and Weatherall (2016a). 2 Here and in what follows, we consider only torsion-free derivative operators.
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think, captures the intrinsic geometry more effectively than intro-
ducing an equivalence class of derivative operators.3 More gener-
ally, Wallace argues that the example of Maxwellian spacetime,
defined following Earman, shows that coordinate-free methods are
not an intuitive way of characterizing certain spatiotemporal
structures. But even setting aside the issue of what counts as more
“intuitive”, Wallace is surely correct that the definition of a “stan-
dard of rotation” used by Earman and others obscures the intrinsic
geometry of Maxwellian spacetime. One might think, from expe-
rience with other examples, that it would preferable to have both
Kleinian and coordinate-free characterizations of a standard of
rotation that adequately capture this structure.

My purpose in this short note is to show that one can charac-
terize a “standard of rotation” in just the sense that Earman and
others discuss, in a fully covariant, coordinate-freemanner, without
ever introducing covariant derivative operators and with no
equivalence classes in sight.4 This structure permits an alternative
characterization of Maxwellian spacetime that avoids the worries
mentioned above. In particular I will go on to show how a standard
of rotation can be used to explicitly define quantities, such as the
rate of change of a spacelike vector field in a timelike direction, that
are essential for performing standard manipulations in Maxwellian
spacetime. Along the way, I make some remarks about spatial ge-
ometry in classical spacetime structures that may be of indepen-
dent interest.5

In what follows, let M be a smooth four-manifold.6 A temporal
metric on M is a closed, non-vanishing one-form ta; a spatial metric

onM is a smooth, symmetric tensor field hab, which admits, at each

point, a collection of four non-vanishing covectors s
i
a, for

i ¼ 0;1;2;3, such that habs
i
as
j
b ¼ 1 if i ¼ j ¼ 1;2;3 and 0 otherwise.

A temporal metric ta and spatial metric hab are compatible if
habtb ¼ 0.7 Inwhat follows, wewill limit attention to spatial metrics
that are compatible with some temporal metric (or other). We will
say that a covariant derivative operator V on M is compatible with
temporal and spatial metrics ta and hab if Vatb ¼ 0 and Vahbc ¼ 0.

Fix a spatial metric hab on M. We will say that a vector xa at a
point p in M is timelike if there exists a non-vanishing covector ta
such that habtb ¼ 0 and xatas0; otherwise it is spacelike.8 It follows
immediately that, at any point p, the spacelike vectors at p form a
three dimensional subspace SpM of the tangent space at p, TpM.

Given a temporal metric ta, a timelike vector xa will be called unit if��xata�� ¼ 1.
Let us now introduce the following notation.9 Instead of using

the usual Latin indices, we will write, for spacelike vectors and
vector fields, underlined Latin indices, so that a spacelike vector x
will be written xa. Likewise, given a linear functional l acting on
spacelike vectors, we will write la. Finally, we can consider tensor

fields with (some) underlined indices, as in l
a b
c d: in such cases, an

underlined index appearing in a contravariant (raised) position
indicates that, for any covector ta, if habtb ¼ 0, then ta, contracted
with that index, yields zero; meanwhile an underlined index
appearing in a covariant (lowered) position indicates that the
relevant action is restricted to spacelike vectors (i.e., it is not
defined for timelike vectors). Note that we may always freely
remove the lines under contravariant indices, since every spacelike
vector at a point is in particular a vector at that point; and we may
freely add lines under any covariant (lowered) indices, since every
linear functional on tangent vectors at a point may be restricted to
spacelike vectors at that point. Hence, we may write hab as hab and,
for any temporal metric ta, we have ta ¼ 0. But we cannot generally
add lines under contravariant indices, since not all tangent vectors
are spacelike, and we cannot remove them from covariant indices,
since linear functionals on spacelike vectors will not have unique
extensions to all tangent vectors. We will call underlined indices
spatial indices.

Given the structure defined so far, one can make sense of a
spatial derivative operator D on M, which gives a standard for dif-
ferentiation of smooth fields with (only) spatial indices in spacelike
directions. I make this idea precise below, but the details are not
essential for stating the main claim. The basic fact about spatial
derivative operators that matters for what follows, proved in Prop.
2 below, is that given a spatial metric hab, there exists a unique
spatial derivative operator Dwith the property that Dahbc ¼ 0. Thus
the structure already defined determines a unique spatial deriva-
tive operator, in much the same way that a pseudo-Riemannian
metric determines a unique derivative operator.10

We can now make the central point. Fix a temporal metric ta
compatible with hab. A standard of rotation compatible with ta and
hab is a map N from smooth vector fields xa on M to smooth,
antisymmetric, rank ð2;0Þ tensor fields Nnxa on M, satisfying the
following conditions:

1. N commutes with addition of smooth vector fields, i.e., given
any two smooth vector fields xa and ha, Nnðxa
þhaÞ ¼ Nnxa þNnha;

2. Given any smooth vector field xa and any smooth scalar field a,

NnðaxaÞ ¼ aNnxa þ x½adn�a11;

3 There is an issue, here, which is that alternative approaches all begin with a
coordinate system, and then introduce a class of coordinate transformations that
leave some structure invariantda strategy that I understand as introducing extra
structuredthe coordinate systemdand then removing it by taking equivalence
classes. But I will not address this point in what follows.

4 One might ask: could one do a similar thing in the case of a nondegenerate
metric? (Or, put more baldly, why is this not a standard notion already?) The
answer is “yes”, but it is trivial, since every pseudo-Riemannian metric is
compatible with a unique torsion-free derivative operator, and so one automatically
gets more than a standard of rotation from the metric alone.

5 Of course, this alternative formulation of Maxwellian spacetime only draws
more attention to the question of whether this structure is sufficient to formulate
Newtonian gravitational theory. One would like to find a coordinate-free presen-
tation of the theory that makes use of precisely Maxwellian spacetime, as charac-
terized here, and nothing elseda version, say, of Neil Dewar's “Maxwell gravitation”
expressed using only a standard of rotation, (Dewar, 2017). I do not attempt that
here, though see footnote 21 and the surrounding discussion for a first step in that
direction.

6 We assume all of the manifolds we consider are connected, paracompact, and
Hausdorff.

7 For a discussion of these notions, including an account of why the term “metric”
is appropriate in each case, see Malament (2012, x4.1).

8 Observe that we have defined our notion of timelike and spacelike in a way that
does not refer to a temporal metric.

9 This sort of “mixed index” notation is a generalization of the abstract index
notation; it is described in more detail in, for instance, Weatherall (2016b); see also
Geroch (1996).
10 Note the difference from the presentation in Malament (2012, x4.1): he defines
a spatial derivative operator, but does so only relative to (1) a specific temporal
metric ta and (2) a unit timelike vector field xa; moreover, the spatial derivative
operator he defines acts, in principle, on arbitrary smooth tensor fields on M. There
is nothing wrong with this, of course, and I make use of the same construction in
the Proof of Prop. 2. But it perhaps obscures the sense in which we get a unique
spatial derivative operator from the spatial geometry alone, and given the purpose
of the present note, it seems judicious to avoid any appearances of invoking
structure beyond what is strictly needed.
11 The operator d is the exterior derivative. Here and throughout, we raise indices
on derivative operators with the spatial metric hab , i.e., dna ¼ hmndna.

J.O. Weatherall / Studies in History and Philosophy of Modern Physics xxx (2017) 1e52

Please cite this article in press as: Weatherall, J. O., A brief comment on Maxwell(/Newton)[-Huygens] spacetime, Studies in History and
Philosophy of Modern Physics (2017), https://doi.org/10.1016/j.shpsb.2017.10.001



Download English Version:

https://daneshyari.com/en/article/8954755

Download Persian Version:

https://daneshyari.com/article/8954755

Daneshyari.com

https://daneshyari.com/en/article/8954755
https://daneshyari.com/article/8954755
https://daneshyari.com

