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a b s t r a c t

We consider various curious features of general relativity, and relativistic field theory, in two spacetime
dimensions. In particular, we discuss: the vanishing of the Einstein tensor; the failure of an initial-value
formulation for vacuum spacetimes; the status of singularity theorems; the non-existence of a Newto-
nian limit; the status of the cosmological constant; and the character of matter fields, including perfect
fluids and electromagnetic fields. We conclude with a discussion of what constrains our understanding of
physics in different dimensions.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Philosophers of physicsdand conceptually-oriented mathe-
matical physicistsdhave gained considerable insight into the
foundations and interpretation of our best physical theories,
including general relativity, non-relativistic quantum theory, and
quantum field theory, by studying the relationships between these
theories and other “nearby” theories. For instance, one can better
understand general relativity by studying its relationship to New-
tonian gravitation, particularly in the form of geometrized New-
tonian gravitation (i.e. Newton-Cartan theory)1; or by considering
its relationship to other relativistic theories of gravitation.2 Like-
wise, formulating classical mechanics in the language of Poisson
manifolds provides important resources for understanding the

structure of Hilbert space and quantum theory.3 And thinking
about classical field theory using nets of *-algebras on spacetime
can help us better understand quantum field theory.4

The key feature of projects of the sort just described is that they
are comparative: one draws out features of one theory by consid-
ering the ways in which it differs from other theories. But there is a
closely allied projectdor better, strategy for conceiving of proj-
ectsdthat, though often taken up by mathematical physicists, has
received considerably less attention in the philosophy of physics
literature.5 This strategy is to study the foundations of a physical
theory by considering features of that same theory in other di-
mensions. Doing so can provide insight into questions concerning,
for instance, whether inferences about the structure of the world
thatmake use of the theory in fact follow from the theory itself, or if
they depend on ancillary assumptions. For instance, (vacuum)
general relativity in four dimensions is, in a certain precise sense,
deterministic. But as we argue inwhat follows, this feature depends
on dimensionality; in two dimensions the theory, at least on one
understanding, does not have a well-posed initial value
formulation.
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1 For background on geometrized Newtonian gravitation, see Trautman (1965)
and (especially) Malament (2012, Ch. 4). For projects that aim to use this theory
to provide new insight into general relativty, see, for instance, Cartan (1923, 1924),
Friedrichs (1927), Friedman (1983), Weatherall (2011, 2014, 2017a, 2017b),
Weatherall and Manchak (2014), Dewar and Weatherall (2017), and Ehlers (1997).

2 See, for instance, Brown (2005), Knox (2011, 2013), Pitts (2016), or Weatherall
(2017a).

3 See, for instance, Weyl (1950) and Landsman (1998, 2017) for mathematical
treatments of the main issues; for examples of how these ideas have been applied
by philosophers, see, for instance, Feintzeig (2016a) and Feintzeig, (Le)Manchak,
Rosenstock, and Weatherall (2017).

4 See, for instance, Brunetti, Fredenhagen, and Ribeiro (2012), Rejzner (2016), and
Feintzeig (2016b,c).

5 To our knowledge, the projects that come closest to this strategy are those that
evaluate arguments that spacetime must have a certain dimensionality (Callender,
2005); or those that consider the details of constructive quantum field theory,
which often considers lower-dimensional models (Hancox-Li, 2017; Ruetsche,
2011).
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A detailed study of the physics of different dimensions can also
reveal striking disanalogies between physics in different di-
mensions, which can then inform other projects. For instance, it is
common in the mathematical physics literature to consider quan-
tizing field theoriesdincluding general relativitydin lower di-
mensions.6 Doing so can provide important hints at what a full
theory of quantum gravity, say, might look like. Moreover, there is a
temptation to try to draw preliminary philosophical morals about
our own universe from these quantum theories in lower dimen-
sionsdparticularly among philosophers who prefer to work with
mathematically rigorous formulations of theories, which in the case
of quantum field theories are only available in lower dimensions.
But there are also reasons to be cautious about such hints: if clas-
sical theories, including general relativity, have very different fea-
tures in different dimensions, the inferences we can draw about
their quantum counterparts in those other dimensions may not
carry over to the four dimensional case.

In what follows, we investigate the features of general relativity
in two spacetime dimensions, on several ways of understanding
what that might mean. In the first instance, we suppose that Ein-
stein's equation holds in all dimensions. As we will show, the
resulting theory is strikingly different, in a number of important
ways, from the standard four dimensional theory. Of course, that
theories can differ dramatically in different dimensions is hardly
newsdespecially to the experts in mathematical physics who work
on these theories in fewer (or more) than four dimensionsdand it
is well-known that general relativity in two dimensions is “path-
ological” or (arguably) “trivial”. But there are some features that we
discuss below that, to our knowledge, have not been drawn out in
detail in the literaturedincluding, for instance, the status of the
initial value formulation and the non-existence of a Newtonian
limit (where Newtonian gravitation is generalized by assuming that
the geometrized Poisson equation holds in all dimensions). More-
over, in our view it is valuable to collect these features of the two-
dimensional theory together in one place, and to reflect on what
they can teach us about the structure of general relativity more
generally. They also raise the question of what it means to identify
theories across dimensions, particularly when the ostensibly
“same” theory can have very different qualitative features in
different dimensions.

In the next section, we will discuss the status of the Einstein
tensordwhich vanishes identically in two dimensionsdand Ein-
stein's equation (without cosmological constant). In a sense, this is
the principal feature of two-dimensional general relativity from
which the other strange features follow. In the following section,
we will discuss the status of the initial value formulation and sin-
gularity theorems in two dimensions. Next we will consider New-
tonian gravitation in two dimensions, generalized as noted above,
and show that it is not the classical limit of general relativity. In the
following section, we will consider what happens when one in-
cludes a cosmological constant, exploring the consequences for the
character of some matter fields in two dimensions. We will then
discuss what it means to generalize a theory to different di-
mensions, by considering various arguments about alternative
formulations of the theory in two dimensions. We conclude by
arguing that the discussion here of how to generalize a theory to
other dimensions raises questions for a common view according to
which to interpret a physical theory is to characterize the space of
possibilities allowed by that theory.

2. Einstein's tensor and Einstein's equation

We begin with a few preliminaries concerning the relevant
background formalism of general relativity.7 An n-dimensional
relativistic spacetime (for n � 2) is a pair ðM; gabÞ where M is a
smooth, connected n-dimensional manifold and gab is a smooth,
non-degenerate, pseudo-Riemannian metric of Lorentz signature
ðþ;�;…;�Þ defined on M.8

For each point p2M, the metric assigns a cone structure to the
tangent space Mp. Any tangent vector xa in Mp will be timelike if
gabx

axb >0, null if gabx
axb ¼ 0, or spacelike if gabx

axb <0. Null vectors
delineate the cone structure; timelike vectors are inside the cone
while spacelike vectors are outside. A time orientable spacetime is
one that has a continuous timelike vector field on M. A time ori-
entable spacetime allows one to distinguish between the future
and past lobes of the light cone. In what follows, it is assumed that
spacetimes are time orientable and that an orientation has been
chosen.

For some open (connected) interval I⊆ℝ, a smooth curve
g : I/M is timelike if the tangent vector xa at each point in g½I� is
timelike. Similarly, a curve is null (respectively, spacelike) if its
tangent vector at each point is null (respectively, spacelike). A curve
is causal if its tangent vector at each point is either null or timelike.
A causal curve is future directed if its tangent vector at each point
falls in or on the future lobe of the light cone. A curve g : I/M in a
spacetime ðM; gabÞ is a geodesic if xaVax

b ¼ 0, where xa is the
tangent vector to g and Va is the unique derivative operator
compatible with gab.

The fundamental dynamical principle of general relativity is
known as Einstein's equation. In four dimensions, Einstein's equa-
tion may be written, without cosmological constant, in natural
units as

Rab �
1
2
gabR ¼ 8pTab: (2.1)

Here Rab ¼ Rnabn is the Ricci tensor associated with gab and R ¼ Raa
is the curvature scalar. The left-hand side of this equation is known
as the Einstein tensor, often written Gab; the right-hand side is the
sum of the energy-momentum tensors associated with all matter
present in the universe and their interactions.

In the first instance, we generalize general relativity to other
dimensions by taking this expression to relate curvature and
energy-momentum in arbitrary dimensions (We will return to this
proposal in sections 5 and 6 and consider other possibilities.). In
particular, define, in a spacetime of any dimension, the Einstein
tensor to be Gab ¼ Rab � 1

2gabR.
We have the following immediate proposition.

Proposition 1. Let ðM; gabÞ be a two-dimensional spacetime. Then
Rab ¼ 1

2Rgab and Gab ¼ 0.

Proof. Given a pseudo-Riemannian manifold of any dimension
n � 2, the Riemann tensor Rabcd ¼ ganRnbcd is antisymmetric in the
first two indices and in the last two indices: Rabcd ¼ R½ab�½cd�. It fol-
lows that Rabcd can be written as a linear combination of outer
products of two-forms. But the space of two-forms on a two-
dimensional manifold is one-dimensional, and so we have
Rabcd ¼ f εabεcd, where εab is either volume element on M

6 See, for instance, Glimm and Jaffe (1987); for a discussion of quantum gravity in
particular, see Carlip (2003).

7 The reader is encouraged to consult Hawking and Ellis (1973), Wald (1984), and
Malament (2012) for details.

8 We also assume M to be Hausdorff and paracompact. All objects that are can-
didates to be smooth in what follows are assumed to be so, even when not
mentioned explicitly.
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