ARTICLE IN PRESS

international journal of hydrogen energy XXX (2018) 1–14

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier.com/locate/he

Reinforced photocatalytic reduction of CO₂ to fuel by efficient S-TiO₂: Significance of sulfur doping

Joshua O. Olowoyo ^a, Manoj Kumar ^b, Suman L. Jain ^a, Shaohua Shen ^c, Zhaohui Zhou ^c, Samuel S. Mao ^d, Alexander V. Vorontsov ^e, Umesh Kumar ^{a,*}

^a Chemical Science Division, CSIR-Indian Institute of Petroleum Dehradun, India

^b Catalytic Conversion Division, CSIR-Indian Institute of Petroleum Dehradun, India

^c International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power

Engineering, Xi'an Jiaotong University, Shaanxi, China

^d Department of Mechanical Engineering, University of California at Berkeley, Berkeley, USA

^e Altai State University, pr. Lenina 61, Barnaul 656049, Russia

ARTICLE INFO

Article history: Received 26 March 2018 Received in revised form 2 July 2018 Accepted 30 July 2018 Available online xxx

Keywords: Anatase TiO₂ CO₂ reduction DFT Photocatalysis Sulfur doping

ABSTRACT

The photocatalytic reduction of CO_2 to valuable chemicals and fuels is an efficient approach to control the ever-rising CO_2 level in the atmosphere. The present paper describes a significant improvement in photoreduction of carbon dioxide (CO₂) using sulfur (S) doped titania (S-TiO₂) nanoparticles as a photocatalyst under UV-A and visible light irradiation. The sulfur doping was done by following a simple sonothermal method, and a series of photocatalysts were synthesized with the varied amount of S doping. Various characterization techniques were employed for the photocatalysts such as XRD, surface area, UV-Visible, SEM, TEM, and XPS. The XPS reveals that S is predominantly present as S⁴⁺ in S-TiO₂. The electronic structure for S-TiO₂ anatase was calculated with the Vienna *ab* initio simulation package (VASP) code in the framework of spin-polarized density functional theory. Additional states closer to the valence band are produced inside the band gap as a result of doping. In situ reductive reaction conditions can partially reduce the catalyst, and results in the shift of Fermi level into the conduction band. It is suggested that Sdoping increases catalyst surface conductivity, improves the charge transfer rate and the rate of photocatalytic reactions. The prepared series of catalysts have shown excellent activity under UV-A and visible light for photocatalytic reduction of CO2. The effect of the different base including K₂CO₃, Na₂CO₃, NaOH and KOH; catalyst amount; sulfur doping amount; and light wavelength were monitored. Methane, ethylene, propylene, and propane were observed as reaction products. In 24 h, S-TiO₂ exhibited the highest photoactivity in KOH aqueous solution with a maximum yield of 6.25 μ mol g⁻¹ methane, 2.74 μ mol g⁻¹ of ethylene, 0.074 μ mol g⁻¹ of propylene and 0.030 μ mol g⁻¹ of propane under UV-A irradiation. The catalysts were active in visible light and able to generate methane and methanol in acetonitrile-H₂O mixture with/without TEOA as sacrificial donor producing 846.5 μ mol g⁻¹ of methane and 4030 μ mol g⁻¹ of methanol for the former and 167.6 μ mol g⁻¹ of methane and 12828.4 μ mol g⁻¹ of methanol for the latter case. An estimate demonstrates that mass transfer does not limit the CO₂ reaction.

© 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

* Corresponding author.

E-mail address: umesh_kumar@iip.res.in (U. Kumar).

https://doi.org/10.1016/j.ijhydene.2018.07.193

0360-3199/© 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Please cite this article in press as: Olowoyo JO, et al., Reinforced photocatalytic reduction of CO₂ to fuel by efficient S-TiO₂: Significance of sulfur doping, International Journal of Hydrogen Energy (2018), https://doi.org/10.1016/j.ijhydene.2018.07.193

Introduction

The rapid increase in the CO₂ level in the earth's atmosphere is mainly attributed to the anthropogenic influence, and this increase leads to the global warming and climate change. The CO_2 sequestration is challenging with its high cost and ability to store several billion tons of CO₂ per year [1,2]. One promising, alternative route as a solution to the aforementioned challenges is to convert anthropogenic CO2 to carboncontaining useful chemicals and fuels via solar-induced catalytic reduction [3,4]. Since Inoue et al. pioneered photocatalytic reduction of CO2, many photocatalytic systems for $\ensuremath{\text{CO}_2}$ reduction to value-added chemicals and hydrocarbon fuels have been reported; however, low photocatalytic activities have limited the progress [5,6]. Hence, better and more efficient photocatalysts and reaction systems are needed to reach significant CO₂ conversion, high products yield and improved selectivity [7–11].

Among the reported photocatalysts, TiO_2 has been the most popular photocatalyst due to its robust reactivity, lowcost, chemical stability, nontoxicity, commercial availability and higher oxidation potential. The anatase phase of TiO_2 (3.2 eV band gap) is active under UV radiation. Low visible light utilization and decreased separation of electron-hole pairs have limited its performance in CO_2 reduction [12–14]. To this end, numerous efforts, either by surface modifications or improvement in crystallinity and surface area of TiO_2 have been adopted to retard electron-hole pair recombination and to increase the photocatalytic efficiency of TiO_2 . Surface modifications of TiO_2 such as the doping of metals or nonmetals have been employed [15–19].

The doping with non-metals has shown a great potential for visible light activity of TiO₂. The dopants can introduce additional energy levels inside the band gap that can participate in electron-hole pairs creation with visible light photons [6,20]. In contrast to many other non-metals, sulfur (S) atoms could exist in several oxidation states - S^{2-} , S^{4+} or S^{6+} in the TiO₂ lattice depending on the conditions of synthesis or the type of sulfur precursors. All oxidation states are known to enhance photocatalytic activity, since anionic (S^{2-}) and cationic dopants (S^{4+}/S^{6+}) could substitute O and Ti ions in the TiO₂ lattice, respectively, leading to intra-gap impurity states between the valence and conduction band [21,22].

The sulfur-doped TiO₂ photocatalysts (S-TiO₂) have been prepared by various synthesis approaches including oxidative annealing [23], mechanochemical [24], electroless plating [25], sol-gel [26], micro-arc oxidation [27], hydrothermal [28], sacrificial core removal techniques [29], atmospheric pressure chemical vapour deposition [30], and oxidant peroxide method (OPM) assisted hydrothermal treatments [31]. Anionic sulfur doping in TiO₂ was done by Umebayashi et al. who synthesized S-doped TiO₂ by oxidative annealing of titanium disulfide and proposed that sulfur remained as a dopant anion in TiO₂ similarly to TiS [23]. Ohno et al. have synthesized chemically modified S-doped TiO₂ photocatalysts by using thiourea as S source. They substituted some of the lattice titanium ions by S⁴⁺ ions and pointed out that the anionic sulfur doping is difficult because S^{2–} has a significantly larger ionic radius (1.84 Å) compared to that of O^{2-} (1.22 Å), but the substitution of Ti⁴⁺ (0.65 Å) by S^{4+} (approx. 0.51 Å) is chemically more favorable [32]. Zhou and co-workers prepared Sdoped nanosize TiO₂ by a mechanochemical method via hydrolysis of TiCl₄ with thiourea. The obtained photocatalyst showed a high photocatalytic activity for the decomposition of methylene blue [24]. Zhang et al. synthesized visible-light active $TiO_{2-x}S_x$ in rutile structure by means of a mechanochemical method and observed its high photocatalytic activity in NOx gases removal under visible light (510 nm) irradiation [33]. Niu et al. prepared Fe-S co-doped TiO₂ to suppress the recombination of electron-hole pairs and consequently to promote the formation of hydroxyl radical for better photocatalytic degradation of phenol under visible light irradiation [28]. The applications of prepared S-TiO₂ were mainly focused on bacteria detoxification and the degradation of organic pollutants [23-31]. So far to the best of our knowledge, no literature report discusses the in-depth role of S-doping in TiO₂ for the photocatalytic reduction of carbon dioxide.

Herein, in continuation of our on-going studies on photoreduction of CO₂, we report a successful methodology for the photocatalytic reduction of CO₂ using S-TiO₂ as catalyst under UV-A and visible light irradiation. The sulfur-doped TiO₂ photocatalysts with a high surface area were synthesized by an easy sonothermal method. The performance of the prepared photocatalysts was evaluated for CO₂ reduction. The effects of different operating parameters such as kind of water-soluble base, catalyst amount, sulfur doping amount, and irradiation wavelength (UV-A, and visible light) were measured to get optimum catalyst and reaction conditions. The photocatalytic reduction of CO₂ was also evaluated in ACN-H₂O mixture with and without triethanolamine (TEOA) as a sacrificial electron donor. The electronic structure of S doped anatase TiO₂ was computed with the Vienna *ab initio* simulation package (VASP) code in the framework of spinpolarized density functional theory to get the effect of impurity level on photoelectron conductivity.

Experimental

Materials

Sulfur powder (SP) from Thomas Baker, tetrabutyl orthotitanate (TBOT) from Aldrich; methanol (CH₃OH), nitric acid (HNO₃), triethanolamine (TEOA) and sodium hydroxide (NaOH) from Merck; ethanol (C₂H₅OH) from Fischer Chemicals; acetonitrile (ACN) for HPLC spectroscopy from Sd Fine-Chem limited; sodium carbonate anhydrous (Na₂CO₃) from HiMedia; potassium carbonate (K₂CO₃) from Loba Chemie; potassium hydroxide (KOH) from RFLC; CO₂ (99.9995%) from Sigma Gases; methane, ethylene, propylene and propane gases (99.9995%) from Sigma gases; and HPLC grade water (H₂O) were used as chemicals. All chemicals were analytical grade and were used without further purification.

Preparation of photocatalysts

A series of sulfur-doped TiO_2 photocatalysts were prepared with variable sulfur doping level. The sulfur powder was ball milled for 15 min to get the homogeneous sulfur powder. In a

Please cite this article in press as: Olowoyo JO, et al., Reinforced photocatalytic reduction of CO₂ to fuel by efficient S-TiO₂: Significance of sulfur doping, International Journal of Hydrogen Energy (2018), https://doi.org/10.1016/j.ijhydene.2018.07.193

Download English Version:

https://daneshyari.com/en/article/8954937

Download Persian Version:

https://daneshyari.com/article/8954937

Daneshyari.com