

A practical synthesis of archaeosine and its base

Natsuhisa Oka ^{a, b, *}, Akane Fukuta ^a, Kaori Ando ^{a, **}

^a Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan

^b Center for Highly Advanced Integration of Nano and Life Sciences, Gifu University (G-CHAIN), 1-1 Yanagido, Gifu, 501-1193, Japan

ARTICLE INFO

Article history:

Received 25 July 2018

Accepted 6 August 2018

Available online 8 August 2018

Keywords:

Archaeosine

PreQ₀

Deazaguanosine

Nucleoside

Amidine

Mitsunobu reaction

ABSTRACT

A practical synthetic route to 7-formamidino-7-deazaguanosine (archaeosine), a hypermodified nucleoside observed in archaeal tRNA, has been developed, which involves the addition of hydroxylamine to the cyano group of 7-cyano-7-deazaguanosine (preQ₀-nucleoside) and a subsequent Pd-catalyzed hydrogenation. PreQ₀-nucleoside was obtained from an optimized β -selective glycosylation developed by Hocek et al. The corresponding archaeosine base was subsequently synthesized in high yield from its precursor 7-cyano-7-deazaguanine (preQ₀).

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

7-Formamidino-7-deazaguanosine (archaeosine or G⁺; Fig. 1) is a hypermodified nucleoside located at position 15 of archaeal tRNA [1,2]. Since its first appearance in the literature in 1982 [1a], this unique nucleoside has been extensively studied, and its biosynthetic pathways and functions have been gradually uncovered [3]. However, there are still many aspects that remain to be elucidated. For example, G⁺ is considered to stabilize the three-dimensional structure of tRNA, but the mechanism of stabilization has not yet been fully clarified [3b]. Chemically synthesized G⁺ and oligonucleotides that contain G⁺ should thus represent useful tools to investigate its functions in detail.

To date, three reports on the chemical synthesis of G⁺ have been published [1b,4]. McCloskey et al. have synthesized G⁺ in 31% yield from 7-cyano-7-deazaguanosine (preQ₀-nucleoside) by the addition of NH₃ to the 7-cyano group in the presence of a catalytic amount of NH₄Cl in liquid NH₃ at ~100 °C. The total synthesis was achieved in seven steps from 7-cyano-7-deazaadenosine (toyocamycin) to G⁺ with an overall yield of 0.7% [1b]. Carell et al. have reported the synthesis of G⁺ via the addition of MeOH to the 7-cyano group of preQ₀-nucleoside under acidic conditions and subsequent nucleophilic substitution by methanolic ammonia

(Pinner reaction [5]) in 30% yield (eight steps from 2,6-diaminopyrimidin-4-one; 0.8% overall yield) [4a]. These authors have also reported another synthesis of G⁺, in which a protected preQ₀-nucleoside was subjected to Pinner conditions for the simultaneous formation of the 7-formamidine group and the global deprotection to generate G⁺ in 40% yield (eight steps from 2,6-diaminopyrimidin-4-one; 2.4% overall yield) [4b].

Despite their success, these studies also show two challenges that remain to be resolved for a more efficient total synthesis of G⁺: i) the inefficient generation of the 7-formamidine group, for which neither the direct addition of NH₃ [1b] nor the Pinner reaction is effective [4]; ii) the low yield of the glycosylation for the preparation of preQ₀-nucleoside, which is the synthetic precursor of G⁺. PreQ₀-nucleoside has been synthesized in low to modest yields by Lewis-acid- or Brønsted-base-promoted glycosylations between the corresponding ribose moiety and preQ₀ or some other 7-deazaguanine derivatives with appropriate protecting groups

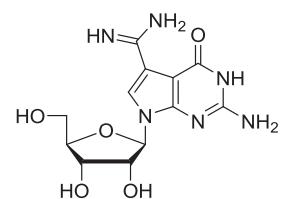
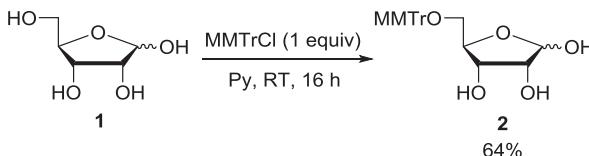



Fig. 1. Chemical structure of archaeosine.

* Corresponding author.

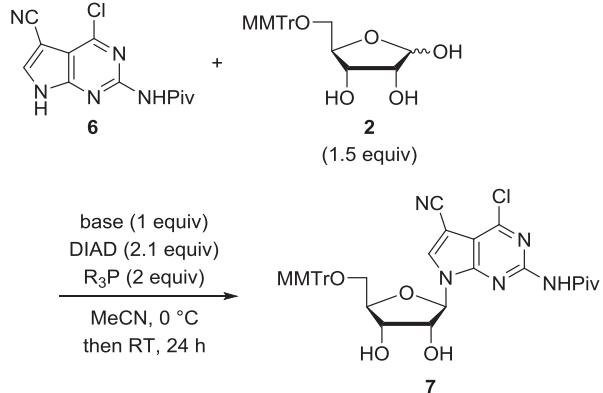
** Corresponding author.

E-mail addresses: oka@gifu-u.ac.jp (N. Oka), ando@gifu-u.ac.jp (K. Ando).

Scheme 1. Synthesis of glycosyl donor 2.

[4,6]. Although the glycosylation step can be circumvented by using toyocamycin as the starting material, the latter is an expensive natural product and its conversion to preQ₀-nucleoside requires multiple steps [1b,7].

We anticipated that the conversion of the 7-cyano group into the 7-formamidino group could possibly be carried out more smoothly via an *N*-hydroxyformamidino intermediate, which can be obtained from the addition of hydroxylamine. This strategy has previously been applied to the synthesis of 7-formamidino-7-deazaadenosine and 7-formamidino-7-deazainosine [8], but not to the synthesis of G⁺ [9]. We also considered that the synthesis of preQ₀-nucleoside should be achieved more efficiently by applying a modified Mitsunobu reaction, which has recently been reported by Hocek et al. [10]. This reaction is completely β -selective and proceeds under nearly neutral conditions so that any potential undesired acid- or base-promoted side reactions can be suppressed.


2. Results and discussion

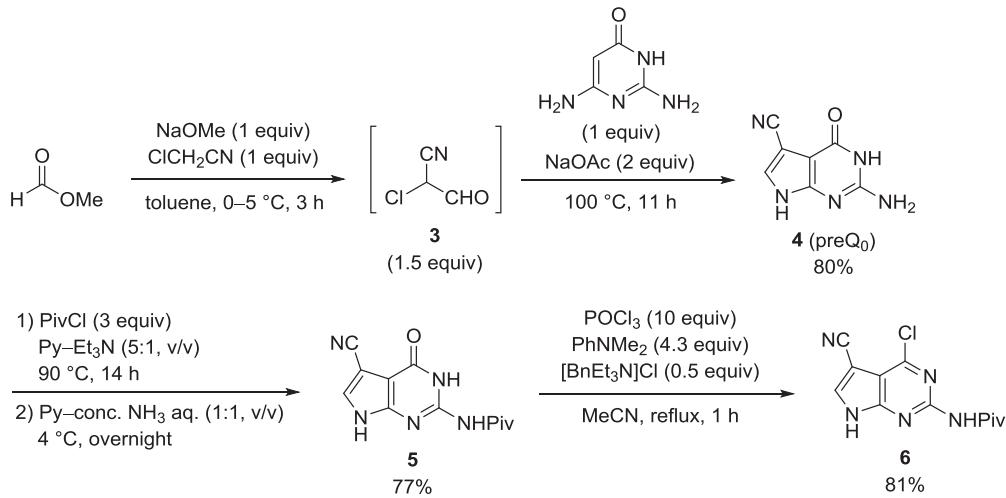
2.1. Synthesis of preQ₀-nucleoside and archaeosine

Initially, we investigated the synthesis of preQ₀-nucleoside. The corresponding glycosyl donor and acceptor for the glycosylation were synthesized according to **Schemes 1 and 2**, respectively. The primary hydroxy group of ribose **1** was selectively protected with a monomethoxytrityl (MMTr) group to give **2** (**Scheme 1**) [10]. PreQ₀ **4** [11] was synthesized from 2,6-diaminopyrimidin-4-one and converted into an appropriately protected derivative (**6**) [10a] according to a literature procedure [4a] (**Scheme 2**).

Then, we studied the glycosylation between **2** and **6** (**Table 1**). A direct application of the reaction conditions reported by Hocek *et al.* using DBU, DIAD, and Bu₃P^{10a} afforded the desired product (**7**) in 50% yield (entry 1). Upon screening phosphines and tertiary amines, we discovered that the yield of **7** significantly improved (89%) when DBU was replaced with *N,N*-diisopropylethylamine

Table 1
Synthesis of **7** via a Mitsunobu reaction.

entry	base	R ₃ P	yield (%)
1	DBU	Bu ₃ P	50
2	<i>i</i> -Pr ₂ NEt	Bu ₃ P	89
3 ^a	<i>i</i> -Pr ₂ NEt	Bu ₃ P	78
4	Et ₃ N	Bu ₃ P	85
5	2,6-lutidine	Bu ₃ P	76
6	<i>i</i> -Pr ₂ NEt	MePPh ₂	66
7	<i>i</i> -Pr ₂ NEt	Ph ₂ PCH ₂ CH ₂ PPh ₂ ^b	51
8	<i>i</i> -Pr ₂ NEt	Ph ₃ P	55


^a **2** (1.2 equiv), DIAD (1.5 equiv), and Bu₃P (1.5 equiv).

^b 1 equiv.

(entry 2). Reducing the amount of **2** from 1.5 equiv to 1.2 equiv decreased the yield of **7** from 89% to 78% (entry 3). Bases weaker than *N,N*-diisopropylethylamine, such as triethylamine and 2,6-lutidine, furnished **7** in lower yield (76–85%, entries 4 and 5). More electron-deficient phosphines than Bu₃P also resulted in the less efficient formation of **7** (51%–66%, entries 6–8).

As the protected preQ₀-nucleoside **7** was obtained in high yield, we attempted to deprotect **7** to obtain preQ₀-nucleoside. For that purpose, we tried to hydrolyze the 6-chloro group by applying the conditions of a DABCO-promoted [4a,12] hydrolysis (**Scheme 3**). However, the desired product (**8**) was not produced, presumably due to the robustness of the 6-chloro group.

Therefore, we synthesized the preQ₀ derivative **10**, which

Scheme 2. Synthesis of glycosyl acceptor **6**.

Download English Version:

<https://daneshyari.com/en/article/8955115>

Download Persian Version:

<https://daneshyari.com/article/8955115>

[Daneshyari.com](https://daneshyari.com)