Accepted Manuscript

Title: An experimental and theoretical study of the hydrogen resistance of Ti_3SiC_2 and Ti_3AlC_2

Authors: Canhui Xu, Haibin Zhang, Shuanglin Hu, Chen Chen, Xiaosong Zhou, Shuming Peng, Haiyan Xiao, Xingyu Gao

S0010-938X(16)31313-0 https://doi.org/10.1016/j.corsci.2018.07.029 CS 7628

To appear in:

Received date:	7-12-2016
Revised date:	15-7-2018
Accepted date:	23-7-2018

Please cite this article as: Xu C, Zhang H, Hu S, Chen C, Zhou X, Peng S, Xiao H, Gao X, An experimental and theoretical study of the hydrogen resistance of Ti_3SiC_2 and Ti_3AlC_2 , *Corrosion Science* (2018), https://doi.org/10.1016/j.corsci.2018.07.029

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

An experimental and theoretical study of the hydrogen resistance of Ti₃SiC₂ and Ti₃AlC₂

Canhui Xu^{*a*}, Haibin Zhang^{*a**}, Shuanglin Hu^{*a**}, Chen Chen^{*a*}, Xiaosong Zhou^{*a*}, Shuming Peng^{*a*}, Haiyan Xiao^{*b*}, Xingyu Gao^{*c*} ^{*a*}Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang, 621900, China ^{*b*}School of physical electronics, University of Electronic Science and Technology of China, Chengdu 610054, China ^{*c*}Institute of Applied Physics and Computational Mathematics, CAEP Software Center for High Performance Numerical Simulation, Beijing 100088, China

* Corresponding author. Tel: +86-816-2496712

E-mail address: <u>hbzhang@caep.cn</u>, <u>hushuanglin@caep.cn</u>

Highlights

- Hydrogenation leads to significant structure degradation on Ti₃AlC₂ by promoting the exudation of Al atoms which form Al bubbles on the powders surface, while there is no obvious morphology change on Ti₃SiC₂.
- The more apparent hydrogen-induced degradation observed for Ti₃AlC₂ is theoretically interpreted by the higher hydrogen diffusivity in Ti₃AlC₂ and the larger reduction of both formation energy and diffusion energy barrier of Al vacancy in Ti₃AlC₂ than corresponding values of Si vacancy in Ti₃SiC₂.

Abstract: The hydrogen resistance of Ti_3SiC_2 and Ti_3AlC_2 is investigated by a combination of high temperature hydrogenation experiments and first-principles calculations. The hydrogen absorption rate in Ti_3AlC_2 powders is twice of that in Ti_3SiC_2 . Hydrogenation leads to significant structure degradation on Ti_3AlC_2 by promoting the exudation of Al atoms which

Download English Version:

https://daneshyari.com/en/article/8955348

Download Persian Version:

https://daneshyari.com/article/8955348

Daneshyari.com