Accepted Manuscript

Title: Growth behavior of CVD diamond films with enhanced electron field emission properties over a wide range of experimental parameters

Authors: Xinyi Jia, Nan Huang, Yuning Guo, Lusheng Liu, Peng Li, Zhaofeng Zhai, Bing Yang, Ziyao Yuan, Dan Shi, Xin Jiang

PII: S1005-0302(18)30115-4

DOI: https://doi.org/10.1016/j.jmst.2018.04.021

Reference: JMST 1251

To appear in:

Received date: 12-2-2018 Revised date: 11-4-2018 Accepted date: 12-4-2018

Please cite this article as: Xinyi Jia, Nan Huang, Yuning Guo, Lusheng Liu, Peng Li, Zhaofeng Zhai, Bing Yang, Ziyao Yuan, Dan Shi, Xin Jiang, Growth behavior of CVD diamond films with enhanced electron field emission properties over a wide range of experimental parameters (2010), https://doi.org/10.1016/j.jmst.2018.04.021

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Growth behavior of CVD diamond films with enhanced electron field emission properties over a wide range of experimental parameters

Xinyi Jia ^{1,2,#}, Nan Huang ^{1,#}, Yuning Guo ³, Lusheng Liu ¹, Peng Li ¹, Zhaofeng Zhai ^{1,2}, Bing Yang ¹, Ziyao Yuan ^{1,2}, Dan Shi ^{1,2}, Xin Jiang ^{1,3,*}

* Corresponding author. Prof. Xin Jiang, Ph.D.; Tel.: +86 02483970803; Fax: +86 02483970803.

E-mail address: xjiang@imr.ac.cn.com (X. Jiang).

[Received 12 February 2018; Received in revised form 11 April 2018; Accepted 12 April 2018]

In this study, diamond films were synthesized on silicon substrates by microwave plasma enhanced chemical vapor deposition (CVD) over a wide range of experimental parameters. The effects of the microwave power, CH₄/H₂ ratio and gas pressure on the morphology, growth rate, composition, and quality of diamond films were investigated by means of scanning electron microscope (SEM), X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). A rise of microwave power can lead to an increasing pyrolysis of hydrogen and methane, so that the microcrystalline diamond film could be synthesized at low CH₄/H₂ levels. Gas pressure has similar effect in changing the morphology of diamond films, and high gas pressure also results in dramatically increased grain size. However, diamond film is deteriorated at high CH₄/H₂ ratio due to the abundant graphite content including in the films. Under an extreme condition of high microwave power of 10 kW and high CH₄ concentration,

¹ Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China

² School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China

³ Institute of Materials Engineering, University of Siegen, Paul-Bonatz-Str. 9-11, 57076 Siegen, Germany

^{*}These authors contributed equally to this work

Download English Version:

https://daneshyari.com/en/article/8955410

Download Persian Version:

https://daneshyari.com/article/8955410

<u>Daneshyari.com</u>