Accepted Manuscript

Chemical substitution in spinel structured LiZnNbO₄ and its effects on the crystal structure and microwave performance

Bowen Zhang, Lingxia Li, Weijia Luo

PII: S0925-8388(18)33129-3

DOI: 10.1016/j.jallcom.2018.08.241

Reference: JALCOM 47329

To appear in: Journal of Alloys and Compounds

Received Date: 8 June 2018

Revised Date: 22 August 2018 Accepted Date: 25 August 2018

Please cite this article as: B. Zhang, L. Li, W. Luo, Chemical substitution in spinel structured LiZnNbO₄ and its effects on the crystal structure and microwave performance, *Journal of Alloys and Compounds* (2018), doi: 10.1016/j.jallcom.2018.08.241.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Chemical substitution in spinel structured LiZnNbO₄ and its effects on

the crystal structure and microwave performance

Bowen Zhang, Lingxia Li[†], Weijia Luo

School of Electronic and Information Engineering and Key Laboratory for Advanced Ceramics and

Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072, China

Abstract:

LiZn_{1-x}M_xNbO₄ (M=Co, Ni) (x=0-0.06) systems were fabricated by a facile solid-state

reaction method. Structure and property relationships of spinel structured LiZn_{1-x}M_xNbO₄ were

investigated systematically. Appropriate amount of Co²⁺ and Ni²⁺ greatly improved the dielectric

loss of LiZnNbO₄ ceramics. While, the dielectric loss deteriorated seriously when the doping

content exceeded x=0.02. The origin of dielectric loss in LiZn_{1-x}M_xNbO₄ ceramics was

investigated systematically. Moreover, the theoretical dielectric constant and linear expansion

coefficient were calculated on the bases of the crystallographic parameters from XRD refinement.

The temperature coefficient of resonant frequency calculated by the P-V theory agreed well with

the test values. Due to the small doping content, the change in chemical bonds was negligible.

Density became the major factor determining the variation of dielectric constant in LiZnNbO₄

ceramics. At last, excellent microwave dielectric properties were obtained: Ts= 1010° C, ε_r =15.25,

 $Q_{f}=107,000GHz$, $\tau_{f}=-63.3ppm/^{\circ}C$ for $LiZn_{0.98}Co_{0.02}NbO_{4}$ and $Ts=995^{\circ}C$, $\varepsilon_{r}=14.85$,

Qf=104,000GHz, $\tau_f=-61.7ppm/^{\circ}C$ for $LiZn_{0.98}Ni_{0.02}NbO_4$.

Keywords: Lattice vibration; Raman; Dielectric loss; Band gap; Linear expansion coefficient

[†] Corresponding author. Tel./fax: +86 2227402838.

E-mail:tjuzhangbowen2014@163.com

_

Download English Version:

https://daneshyari.com/en/article/8955444

Download Persian Version:

https://daneshyari.com/article/8955444

<u>Daneshyari.com</u>