Accepted Manuscript

A novel P-doped MnCo₂S₄ nanoneedles assembled dandelion-like structure for high performance hybrid supercapacitors

Hong Jia, Yingying Song, Jie Wu, Wenwen Fu, Jianguo Zhao, Xianming Liu

PII: S0167-577X(18)31346-6

DOI: https://doi.org/10.1016/j.matlet.2018.08.135

Reference: MLBLUE 24846

To appear in: Materials Letters

Received Date: 10 July 2018
Revised Date: 16 August 2018
Accepted Date: 24 August 2018

Please cite this article as: H. Jia, Y. Song, J. Wu, W. Fu, J. Zhao, X. Liu, A novel P-doped MnCo₂S₄ nanoneedles assembled dandelion-like structure for high performance hybrid supercapacitors, *Materials Letters* (2018), doi: https://doi.org/10.1016/j.matlet.2018.08.135

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

A novel P-doped MnCo₂S₄ nanoneedles assembled dandelion-like structure for high performance hybrid supercapacitors

Hong Jia^{a*}, Yingying Song^a, Jie Wu^a, Wenwen Fu^a, Jianguo Zhao^a, Xianming Liu^{a*} ^aHenan Key Laboratory of Electromagnetic Transformation and Detection, Luoyang Normal University, Luoyang 471934, China.

E-mail: jiahong517@aliyun.com

Abstract

A novel electrode material based on P-doped dandelion-like MnCo₂S₄ spheres was fabricated and examined for application in electrochemical supercapacitors. The unique structure made up of nanoneedles endows high electrical conductivity and large accessible ion-diffusion surface area. When used as the electrode, the P-doped MnCo₂S₄ nanostructures give an improved specific capacity of 543.3 F g⁻¹. A supercapacitor employing the P-MnCo₂S₄ and active carbon as the electrodes shows a high energy density of 20.8 W h kg⁻¹ at a power density of 400 W kg⁻¹, and an excellent cycling stability of 91.1% retention after 5000 cycles. As a proof-of-concept demonstration, we show that the as-made supercapacitor is able to drive three LEDs.

Key words: P-doped MnCo₂S₄, hierarchical, dandelion-like, supercapacitor

1. Introduction

Supercapacitor, holding the high energy density and outstanding cycling stability, has attracted great attention in hybrid electric vehicles and portable electronic devices. But its lower energy density compared with that of rechargeable batteries limit the applications of supercapacitors.[1,2] Therefore, there has been a constant search for

Download English Version:

https://daneshyari.com/en/article/8955640

Download Persian Version:

https://daneshyari.com/article/8955640

<u>Daneshyari.com</u>