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A Differential algebraic method is of an effective technique in computer numerical analysis. It implements
conveniently differentiation up to arbitrary high order, based on the nonstandard analysis. In this paper, the
differential algebra (DA) method has been employed to compute the high order aberrations up to the fifth order
of electron lenses with quadrupole and octupole corrector whose electric/magnetic fields are in the forms of
discrete arrays, for example, the files computed by FEM or FDM method. The quadrupole and octupole electro-

magnetic fields of arbitrary point are obtained by local analytic expressions, and then field potentials are
transformed into new forms which can be operated in the DA calculation. The program has been developed and
tested as well. The geometric and chromatic aberrations coefficients up to fifth order of electron lenses with
quadrupole and octupole corrector are calculated by the developed program.

1. Introduction

The resolution limiting spherical and chromatic aberrations of static
rotationally symmetric electron lenses are unavoidable in the absence
of space charge and flight reversal [1]. To improve the resolution of
electron microscopes, quadrupole—octupole correctors are necessary to
compensate for both the chromatic and the spherical aberrations, while
a hexapole corrector suffices to eliminate the spherical aberration
which is the dominant resolution-limiting aberration at accelerating
voltages larger than about 100kV [2]. By employing the quad-
rupole—octupole correctors, the aberration correction of round electron
lenses is proven successful [3, 4]. With the successful correction of the
primary aberration, the high order aberration calculation of round
lenses with quadrupole-octupole correctors become dominant. Due to
the complexity of such systems, it is very difficult to calculate the high
aberration coefficients with the Aberration Integrals methods.

Liu et al. derived a set of formulae for computing geometrical
aberration coefficients up to the third order, and the first order chro-
matic aberration coefficients for systems containing electrostatic and
magnetic round, quadrupole, hexapole and octupole lenses and de-
flectors [5]. As well the fifth and even higher order geometrical aber-
rations and the chromatic aberrations of third order were analyzed and
a full list of formulae for the fifth order aberration coefficients of round
lenses in reasonably usable form at last became available [6-8].
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Lencova extended exact ray tracing to cover the new requirements of
aberration-corrected instruments [9].

Differential algebraic (DA) method is a powerful and promising
technique in computer numerical analysis. When applied to nonlinear
dynamics systems, the arbitrary high-order transfer properties of the
systems can be computed directly with high precision [10]. DA method
presents a straightforward way to compute nonlinearity to arbitrary
orders, only by tracing a reference ray. Furthermore, the DA method is
always accurate, limited only by machine precision and algorithm error
independent of the order of the aberrations. In the previous work of our
group, DA methods have been introduced into the electron optics
[11-12]. Further a local analytical expression has been constructed
with high accuracy interpolation of the field, which is calculated nu-
merically for a given position of the reference electron ray. An ad-
vantage of such a way of the built-in interpolation method is that it is
relatively easy to use, in comparison with the expansion of the axial
function into a series of the Hermite functions [13, 14]; this method
that is independent of the axial field functions, can directly use the
potential values of nodal points which are surrounding the given point.
Thus, up to the fifth order aberrations for a round electron lens, the
combined focusing-deflection systems and hexapole correctors have
been solved effectively [15-17].

In this work, the quadrupole and octupole fields are calculated by
the finite element method (FEM) and the reduced quadrupole and
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octupole potentials at mesh points are obtained [18, 19]. Moreover, the
DA theory, operation method and algorithm are investigated in detail
and a local analytical expression of the numerically computed quad-
rupole—octupole field which can be adopted as DA extension numbers
will be introduced into the up to the fifth order aberrations calculations.
Only by tracing a reference ray, up to the fifth order aberrations of a
quadrupole-octupole corrector are achieved. Finally, a practical quad-
rupole—octupole corrector is analyzed and discussed as an example
using the developed DA software in this paper.

2. DA methods for high order aberrations calculations of a
quadrupole-octupole corrector

The properties of a charged particle system can be described by a
transfer map as follow:

rr = R, 6) 'e))

where 1y denotes the final positions and slopes of a charged particle, and
ro denotes the initial positions and slopes of the charged particle. 8
contains other systemic interesting parameters such as energy spread.
Thus 0R/dry denotes the geometric aberrations with respect to initial
conditions, while dR/08 is corresponding to the chromatic aberrations.
DA method presents a straightforward way to compute nonlinearity to
arbitrary orders. Here no analytic formulas for derivatives must be
derived; only by tracing a reference ray, the arbitrary order aberrations
of an electron optics system can be obtained. In addition, the method is
always accurate, limited only by machine precision and algorithm error
independent of the order of the aberrations, which is in sharp contrast
to traditional numerical analysis methods.

For a quadrupole-octupole corrector, there is a replacement of the
relative variables by differential algebraic variables when solving the
electron trajectories; that is, the coordinate (x, y), slope (x’, ¥") and
energy spread A® are set to be differential algebraic arguments. By
employing the available numerical arithmetic such as the fourth order
Runge-Kutta method, a reference trajectory can be numerically traced
in a quadrupole—octupole corrector by numerical solving the trajectory
Eq. (2) in the laboratory Cartesian coordinates (x, y, 2).
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Obviously in the trajectory Eq. (2), the coordinate (x, y), slope (x/,
y’) and energy spread A® are set to be differential algebraic arguments;
In order to trace electron trajectories expressed in super-numbers, the
electric and/or magnetic fields have to be transferred to differential
algebraic arguments.

A typical quadrupole-octupole corrector for an objective lens will
consist of two main parts: the electron lenses whose spherical aberra-
tion and chromatic aberration expected to be corrected; and the
quadrupole-octupole lenses. DA calculations of high order aberrations
for a round electron lens have been solved effectively in a previous
work [13]. Thus in this work, we focus on researching how to transform
the numerically computed quadrupole-octupole field into local analy-
tical expressions which can be adopted as DA extension numbers. No
matter how many lenses and quadrupole-octupole lens are set in the
system, for DA method, the complexity of the algorithm does not in-
crease. The same approach can be used to transform every round lens
and quadrupole—octupole field into DA extension numbers. And then
the DA extension numbers at arbitrary position in the entire system can
be obtained. Only by tracing a referred ray, the optical properties in-
cluding high-order aberrations will be achieved.
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Thus a new version of the DA software is to be developed aimed to
engineering design of a quadrupole-octupole corrector and the key
problem is to construct a local analytical expression for the electric
and/or magnetic potentials at a given position P(x, y, z) of reference
trajectory. In order to calculate up to the 5th order aberrations, these
local analytical expressions are as follows which are constructed by a
suitable interpolation.

uy = lagpGe? —y?) + an (e + yH e — y?)
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The coefficients a; and b; of the Eq. (3) are obtained at the fixed
reference plane (r, z) by a suitable interpolation using the reduced
quadrupole and octupole potentials at the finite element mesh points.
B> and f,4 are the rotation angles of the quadrupole and octupole lenses
relative to the fixed reference plane respectively. For the convenience of
interpolation, the rectangular finite element mesh are adopted in the
vicinity of optical axis where the reference trajectory will be trace, but
mesh size is not necessarily equivalence. Then, an efficient algorithm
for the interpolation is used to construct the local expression of the field
variables, which is a 16-point interpolation shown as in Fig. 1. Com-
pared with our previous methods in which the potentials at irregular
mesh points are firstly interpolated into the potentials at rectangular
mesh points with the equivalent mesh size and then construct the local
expression by 16 points interpolation, the present methods constructing
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Fig. 1. The interpolation using the potentials at 16 points.
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