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A B S T R A C T

Multidimensional diffusion is central to radiation belt and ring current dynamics, but obtaining numerical so-
lutions reliably is subject to difficulties related to “cross terms” in the diffusion equation. Eliminating them, by
constructing new coordinates which diagonalize the diffusion matrix, has been found to be effective in two di-
mensions. Here this approach is reformulated to be both clearer and more robust, with analytical expressions
replacing numerical solutions of differential equations. An approach to extending the method to three dimensions
is presented and discussed.

1. Introduction

Multidimensional diffusion processes form the core of most current
models of radiation belt dynamics (Albert et al., 2009, 2016; Subbotin
and Shprits, 2009; Drozdov et al., 2015; Tu et al., 2013), and are also a
key ingredient in ring current models (Zheng et al., 2011; Kang et al.,
2016; Yu et al., 2016; Jordanova et al., 2016). These processes include
Landau and cyclotron-resonant interactions with various classes of
waves, driving pitch angle and energy scattering, and drift-resonant in-
teractions with ULF waves, leading to radial transport.

Wave-induced pitch angle and energy diffusion are coupled, so the
diffusion coefficients, e.g., Dα0α0 and Dpp, are accompanied by “cross”
diffusion coefficients Dα0p. The corresponding terms in the diffusion
equation can lead to numerical difficulties, and much effort has gone into
dealing with them effectively (Camporeale et al., 2013a,b,c; Albert,
2013). Nevertheless, just guaranteeing positivity of the solution from
traditional, grid-based finite differencing remains surprisingly difficult
(Albert et al., 2009; Albert, 2013). One approach that does so is the
“diagonalization” procedure of Albert and Young (2005), which uses the
values of the diffusion coefficients to construct new variables ðQ1;Q2Þ, in
which the cross terms vanish. Other, rather different approaches which
also guarantee positivity include Monte Carlo solutions of the equivalent
stochastic differential equations or SDEs (Tao et al., 2008), and the
related (but deterministic) “layer” method (Tao et al., 2009, 2016).

In the original implementation of the diagonalization method,Q1 was
simply set to α0 for simplicity. More generally, as mentioned by Albert
and Young (2005), it may be better to require that the two new coordi-
nate curves be orthogonal, which implies they are aligned with the ei-
genvectors of the diffusion matrix. This is worked out in Section 2.

The diffusion coefficients are generally available only on a tabulated
grid, which is interpolated. Albert and Young (2005) did this in the
course of integrating differential equations for the coordinate curves
throughout the ðα0; pÞ plane. Here, the limited availability of the diffu-
sion coefficients is used to advantage: with bilinear interpolation, the
coordinate curves can be integrated and the new variables constructed
analytically, within each cell of the table. This is carried out in Section 3.
Advancing the diffusion equation for f ðtÞ requires f to be evaluated at
points where the constant-Q curves meet cell edges; this is done with
more sophisticated interpolation techniques as discussed in Section 4.

If the geomagnetic field is approximated as a dipole, radial diffusion
decouples from energy and pitch angle diffusion and the two-
dimensional diagonalization method can be used at each L (Albert
et al., 2009). However, in more general magnetic field models, azimuthal
asymmetry couples pitch angle diffusion to radial diffusion, giving a
non-decomposable 3 � 3 diffusion matrix (Schulz, 1991; O'Brien, 2014,
2015). While both the SDE method and the layer method can readily be
generalized to 3D (Zheng et al., 2014, 2016; Selesnick, 2016; Wang et al.,
2017), doing so for the diagonalization method is not as straightforward.
One approach is explored in Section 5.

2. Variables

The two-dimensional bounce-averaged diffusion equation for phase
space density f ðx1; x2Þ at a fixed value of L may be written as

∂f
∂t

¼ 1
G
∇⋅G

�
D11 D12

D12 D22

�
∇f : (1)

Here ðx1; x2Þ are any two independent functions of the adiabatic
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invariants ðJ1; J2Þ, such as ðα0; pÞ or ðsin α0; log EÞ, and ∇ means (∂=∂x1,
∂=∂x2), while G is the Jacobian determinant j∂ðJ1; J2Þ=∂ðx1; x2Þj. The
matrix in Eq. (1) will also be referred to as DXX . It is important that in this
notation Dij≡Dxixj has dimensions of xixj=t so that, for example, Dα0α0 has
dimensions of 1=t while Dpp has dimensions of p2=t. However, the vari-
ables may be nondimensionalized (normalized) without changing the
form of the equation. It is important that in any set of variables, the form
of bounce-averaged quasi-linear diffusion coefficients mathematically
guarantees the condition D11D22 >D2

12 (Albert, 2004).

2.1. Variable transformations

The relationship between the diffusion matrices ½DJJ � and ½DQQ� for
any other set of variables, ðQ1;Q2Þ, may be written as a matrix equation
(Haerendel, 1968; Schulz, 1991). This is just due to the general rules for
partial derivatives, not any special properties of ðJ1; J2Þ. In fact, repeating
it for ½DJJ � and ½DXX � and eliminating ½DJJ � gives the natural generalization

½DQQ� ¼
�
∂1Q1 ∂2Q1

∂1Q2 ∂2Q2

�
½DXX �

�
∂1Q1 ∂1Q2

∂2Q1 ∂2Q2

�
(2)

for any two sets of variables, where ∂jQi means ∂Qi=∂xj.
As in Albert and Young (2005), these partial derivatives also appear

when considering curves on which Q1 and Q2 are constant:

dQ1 ¼ 0⇒S1 ¼ dx2
dx1

����
Q1

¼ �∂Q1=∂x1
∂Q1=∂x2

;

dQ2 ¼ 0⇒S2 ¼ dx2
dx1

����
Q2

¼ �∂Q2=∂x1
∂Q2=∂x2

;

(3)

where the total derivatives can be interpreted as slopes S1 and S2,
respectively, in the ðx1; x2Þ plane. Then the condition DQ1Q2 ¼ 0 can be
written as

D11S1S2 � D12ðS1 þ S2Þ þ D22 ¼ 0: (4)

This single requirement allows a wide range of choice in determining
Q1 and Q2.

With any such choice, the transformation between ðx1; x2Þ and
ðQ1;Q2Þ also defines a transformation between ðJ1; J2Þ and ðQ1;Q2Þ, and
the diffusion equation becomes

∂f
∂t

¼ 1
Γ

�
∂

∂Q1
ΓDQ1Q1

∂f
∂Q1

þ ∂
∂Q2

ΓDQ2Q2

∂f
∂Q2

�
(5)

(Schulz, 1991), where the Jacobian Γ is given by

Γ ¼
���� ∂ðJ1; J2Þ∂ðQ1;Q2Þ

���� ¼
����∂ðJ1; J2Þ∂ðx1; x2Þ

����
����∂ðQ1;Q2Þ
∂ðx1; x2Þ

����
�1

: (6)

If the maximum values of x1 and Q1 correspond to equatorially mir-
roring particles, the associated condition of no transport across the
boundary is D11∂f=∂x1 þ D12∂f=∂x2 ¼ 0 or the simpler but analogous
form ∂f=∂Q1 ¼ 0.

2.2. Diagonalization: previous approach

The simplest approach is to directly specify one of the new variables.
The choice Q1≡x1, as in Albert and Young (2005), with x1 ¼ α0, leads
to 1=S1 ¼ 0,

S2 ¼ dx2
dx1

����
Q2

¼ D12

D11
; (7)

and

DQ1Q1 ¼ D11;
DQ2Q2 ¼ ð∂Q2=∂x2Þ2

�
D22 � D2

12

�
D11

	
:

(8)

Thus curves with constant Q1 are vertical in the ðx1; x2Þ plane, and
constant-Q2 curves are roughly horizontal when their slope D12=D11 is
small, giving a viable grid in the new coordinates. Alternatively, the
choice Q2≡x2, with, e.g., x2 ¼ p=mc, leads to S2 ¼ 0,

1
S1

¼ dx1
dx2

����
Q1

¼ D12

D22
; (9)

and

DQ1Q1 ¼ ð∂Q1=∂x1Þ2
�
D11 � D2

12

�
D22

	
;

DQ2Q2 ¼ D22:
(10)

These constant-Q2 curves are horizontal in the ðx1; x2Þ plane, and
constant-Q1 curves have slope D22=D12 which should be large to give
roughly vertical curves and a good grid.

2.3. Eigenvalues and eigenvectors

Since ½DXX � is symmetric, it can be diagonalized by its eigenvalues λ±
and orthonormal eigenvectors ðV;WÞ:

�
λþ 0
0 λ�

�
¼

�
V1 V2

W1 W2

�
½DXX �

�
V1 W1

V2 W2

�
; (11)

where

λþ ¼ D11 þ D0; λ� ¼ D22 � D0 (12)

and�
V1 W1

V2 W2

�
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D2
12 þ D2

0

q �
D12 �D0

D0 D12

�
; (13)

with

D0≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
D11 � D22

2

�2

þ D2
12

s
� D11 � D22

2
: (14)

D0 is positive, and the diffusion coefficients can be normalized to avoid
incompatible physical dimensions. As D2

12 takes on values from 0 to its
maximum permissible value D11D22, λþ increases and λ� decreases
within the ranges

0 � λ� � minðD11; D22Þ

� maxðD11;D22Þ � λþ � D11 þ D22:

The ratio jD0=D12j can be either large or small. If D11 >D22 then
D0 < jD12j, and letting D12→0 (with fixed D11 and D22) gives D0=D12→0.
Conversely, if D11 <D22, letting D12→0 gives D12=D0→0.

2.4. Diagonalization by eigenvectors

Eq. (11) has an obvious resemblance to Eq. (2) with DQ1Q2 ¼ 0. The
orthogonality of eigenvectors suggests imposing

S1S2 ¼ �1 (15)

on ðQ1;Q2Þ, along with Eq. (4). This leads to quadratic equations for S1
and S2, with solutions

J.M. Albert Journal of Atmospheric and Solar-Terrestrial Physics xxx (2017) 1–6

2



Download English Version:

https://daneshyari.com/en/article/8955798

Download Persian Version:

https://daneshyari.com/article/8955798

Daneshyari.com

https://daneshyari.com/en/article/8955798
https://daneshyari.com/article/8955798
https://daneshyari.com

