Diagonalization of diffusion equations in two and three dimensions

J.M. Albert
Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico, USA

ARTICLE INFO

Keywords:

Radiation belts
Multidimensional diffusion

Abstract

Multidimensional diffusion is central to radiation belt and ring current dynamics, but obtaining numerical solutions reliably is subject to difficulties related to "cross terms" in the diffusion equation. Eliminating them, by constructing new coordinates which diagonalize the diffusion matrix, has been found to be effective in two dimensions. Here this approach is reformulated to be both clearer and more robust, with analytical expressions replacing numerical solutions of differential equations. An approach to extending the method to three dimensions is presented and discussed.

1. Introduction

Multidimensional diffusion processes form the core of most current models of radiation belt dynamics (Albert et al., 2009, 2016; Subbotin and Shprits, 2009; Drozdov et al., 2015; Tu et al., 2013), and are also a key ingredient in ring current models (Zheng et al., 2011; Kang et al., 2016; Yu et al., 2016; Jordanova et al., 2016). These processes include Landau and cyclotron-resonant interactions with various classes of waves, driving pitch angle and energy scattering, and drift-resonant interactions with ULF waves, leading to radial transport.

Wave-induced pitch angle and energy diffusion are coupled, so the diffusion coefficients, e.g., $D_{\alpha_{0} \alpha_{0}}$ and $D_{p p}$, are accompanied by "cross" diffusion coefficients $D_{\alpha_{0} p}$. The corresponding terms in the diffusion equation can lead to numerical difficulties, and much effort has gone into dealing with them effectively (Camporeale et al., 2013a,b,c; Albert, 2013). Nevertheless, just guaranteeing positivity of the solution from traditional, grid-based finite differencing remains surprisingly difficult (Albert et al., 2009; Albert, 2013). One approach that does so is the "diagonalization" procedure of Albert and Young (2005), which uses the values of the diffusion coefficients to construct new variables $\left(Q_{1}, Q_{2}\right)$, in which the cross terms vanish. Other, rather different approaches which also guarantee positivity include Monte Carlo solutions of the equivalent stochastic differential equations or SDEs (Tao et al., 2008), and the related (but deterministic) "layer" method (Tao et al., 2009, 2016).

In the original implementation of the diagonalization method, Q_{1} was simply set to α_{0} for simplicity. More generally, as mentioned by Albert and Young (2005), it may be better to require that the two new coordinate curves be orthogonal, which implies they are aligned with the eigenvectors of the diffusion matrix. This is worked out in Section 2.

The diffusion coefficients are generally available only on a tabulated grid, which is interpolated. Albert and Young (2005) did this in the course of integrating differential equations for the coordinate curves throughout the $\left(\alpha_{0}, p\right)$ plane. Here, the limited availability of the diffusion coefficients is used to advantage: with bilinear interpolation, the coordinate curves can be integrated and the new variables constructed analytically, within each cell of the table. This is carried out in Section 3. Advancing the diffusion equation for $f(t)$ requires f to be evaluated at points where the constant-Q curves meet cell edges; this is done with more sophisticated interpolation techniques as discussed in Section 4.

If the geomagnetic field is approximated as a dipole, radial diffusion decouples from energy and pitch angle diffusion and the twodimensional diagonalization method can be used at each L (Albert et al., 2009). However, in more general magnetic field models, azimuthal asymmetry couples pitch angle diffusion to radial diffusion, giving a non-decomposable 3×3 diffusion matrix (Schulz, 1991; O'Brien, 2014, 2015). While both the SDE method and the layer method can readily be generalized to 3D (Zheng et al., 2014, 2016; Selesnick, 2016; Wang et al., 2017), doing so for the diagonalization method is not as straightforward. One approach is explored in Section 5.

2. Variables

The two-dimensional bounce-averaged diffusion equation for phase space density $f\left(x_{1}, x_{2}\right)$ at a fixed value of L may be written as
$\frac{\partial f}{\partial t}=\frac{1}{G} \nabla \cdot G\left[\begin{array}{ll}D_{11} & D_{12} \\ D_{12} & D_{22}\end{array}\right] \nabla f$.
Here $\left(x_{1}, x_{2}\right)$ are any two independent functions of the adiabatic

[^0]invariants $\left(J_{1}, J_{2}\right)$, such as $\left(\alpha_{0}, p\right)$ or $\left(\sin \alpha_{0}, \log E\right)$, and ∇ means $\left(\partial / \partial x_{1}\right.$, $\partial / \partial x_{2}$), while G is the Jacobian determinant $\left|\partial\left(J_{1}, J_{2}\right) / \partial\left(x_{1}, x_{2}\right)\right|$. The matrix in Eq. (1) will also be referred to as $D_{X X}$. It is important that in this notation $D_{i j} \equiv D_{x_{i} x_{j}}$ has dimensions of $x_{i} x_{j} / t$ so that, for example, $D_{\alpha_{0} \alpha_{0}}$ has dimensions of $1 / t$ while $D_{p p}$ has dimensions of p^{2} / t. However, the variables may be nondimensionalized (normalized) without changing the form of the equation. It is important that in any set of variables, the form of bounce-averaged quasi-linear diffusion coefficients mathematically guarantees the condition $D_{11} D_{22}>D_{12}^{2}$ (Albert, 2004)

2.1. Variable transformations

The relationship between the diffusion matrices $\left[D_{J J}\right]$ and $\left[D_{Q Q}\right]$ for any other set of variables, $\left(Q_{1}, Q_{2}\right)$, may be written as a matrix equation (Haerendel, 1968; Schulz, 1991). This is just due to the general rules for partial derivatives, not any special properties of $\left(J_{1}, J_{2}\right)$. In fact, repeating it for $\left[D_{J J}\right]$ and $\left[D_{X X}\right]$ and eliminating $\left[D_{J J}\right]$ gives the natural generalization
$\left[D_{Q Q}\right]=\left[\begin{array}{cc}\partial_{1} Q_{1} & \partial_{2} Q_{1} \\ \partial_{1} Q_{2} & \partial_{2} Q_{2}\end{array}\right]\left[D_{X X}\right]\left[\begin{array}{cc}\partial_{1} Q_{1} & \partial_{1} Q_{2} \\ \partial_{2} Q_{1} & \partial_{2} Q_{2}\end{array}\right]$
for any two sets of variables, where $\partial_{j} Q_{i}$ means $\partial Q_{i} / \partial x_{j}$.
As in Albert and Young (2005), these partial derivatives also appear when considering curves on which Q_{1} and Q_{2} are constant:
$d Q_{1}=0 \Rightarrow S_{1}=\left.\frac{d x_{2}}{d x_{1}}\right|_{Q_{1}}=-\frac{\partial Q_{1} / \partial x_{1}}{\partial Q_{1} / \partial x_{2}}$,
$d Q_{2}=0 \Rightarrow S_{2}=\left.\frac{d x_{2}}{d x_{1}}\right|_{Q_{2}}=-\frac{\partial Q_{2} / \partial x_{1}}{\partial Q_{2} / \partial x_{2}}$,
where the total derivatives can be interpreted as slopes S_{1} and S_{2}, respectively, in the $\left(x_{1}, x_{2}\right)$ plane. Then the condition $D_{Q_{1} Q_{2}}=0$ can be written as
$D_{11} S_{1} S_{2}-D_{12}\left(S_{1}+S_{2}\right)+D_{22}=0$.
This single requirement allows a wide range of choice in determining Q_{1} and Q_{2}.

With any such choice, the transformation between $\left(x_{1}, x_{2}\right)$ and $\left(Q_{1}, Q_{2}\right)$ also defines a transformation between $\left(J_{1}, J_{2}\right)$ and $\left(Q_{1}, Q_{2}\right)$, and the diffusion equation becomes
$\frac{\partial f}{\partial t}=\frac{1}{\Gamma}\left(\frac{\partial}{\partial Q_{1}} \Gamma D_{Q_{1} Q_{1}} \frac{\partial f}{\partial Q_{1}}+\frac{\partial}{\partial Q_{2}} \Gamma D_{Q_{2} Q_{2}} \frac{\partial f}{\partial Q_{2}}\right)$
(Schulz, 1991), where the Jacobian Γ is given by
$\Gamma=\left|\frac{\partial\left(J_{1}, J_{2}\right)}{\partial\left(Q_{1}, Q_{2}\right)}\right|=\left|\frac{\partial\left(J_{1}, J_{2}\right)}{\partial\left(x_{1}, x_{2}\right)}\right|\left|\frac{\partial\left(Q_{1}, Q_{2}\right)}{\partial\left(x_{1}, x_{2}\right)}\right|^{-1}$.
If the maximum values of x_{1} and Q_{1} correspond to equatorially mirroring particles, the associated condition of no transport across the boundary is $D_{11} \partial f / \partial x_{1}+D_{12} \partial f / \partial x_{2}=0$ or the simpler but analogous form $\partial f / \partial Q_{1}=0$.

2.2. Diagonalization: previous approach

The simplest approach is to directly specify one of the new variables. The choice $Q_{1} \equiv x_{1}$, as in Albert and Young (2005), with $x_{1}=\alpha_{0}$, leads to $1 / S_{1}=0$,
$S_{2}=\left.\frac{d x_{2}}{d x_{1}}\right|_{Q_{2}}=\frac{D_{12}}{D_{11}}$,
and
$D_{Q_{1} Q_{1}}=D_{11}$,
$D_{Q_{2} Q_{2}}=\left(\partial Q_{2} / \partial x_{2}\right)^{2}\left(D_{22}-D_{12}^{2} / D_{11}\right)$
Thus curves with constant Q_{1} are vertical in the (x_{1}, x_{2}) plane, and constant- Q_{2} curves are roughly horizontal when their slope D_{12} / D_{11} is small, giving a viable grid in the new coordinates. Alternatively, the choice $Q_{2} \equiv x_{2}$, with, e.g., $x_{2}=p / m c$, leads to $S_{2}=0$,
$\frac{1}{S_{1}}=\left.\frac{d x_{1}}{d x_{2}}\right|_{Q_{1}}=\frac{D_{12}}{D_{22}}$,
and
$D_{Q_{1} Q_{1}}=\left(\partial Q_{1} / \partial x_{1}\right)^{2}\left(D_{11}-D_{12}^{2} / D_{22}\right)$,
$D_{Q_{2} Q_{2}}=D_{22}$.
These constant- Q_{2} curves are horizontal in the (x_{1}, x_{2}) plane, and constant- Q_{1} curves have slope D_{22} / D_{12} which should be large to give roughly vertical curves and a good grid.

2.3. Eigenvalues and eigenvectors

Since $\left[D_{X X}\right]$ is symmetric, it can be diagonalized by its eigenvalues $\lambda_{ \pm}$ and orthonormal eigenvectors (\mathbf{V}, \mathbf{W}) :
$\left[\begin{array}{cc}\lambda_{+} & 0 \\ 0 & \lambda_{-}\end{array}\right]=\left[\begin{array}{cc}V_{1} & V_{2} \\ W_{1} & W_{2}\end{array}\right]\left[D_{X X}\right]\left[\begin{array}{ll}V_{1} & W_{1} \\ V_{2} & W_{2}\end{array}\right]$,
where
$\lambda_{+}=D_{11}+D_{0}, \quad \lambda_{-}=D_{22}-D_{0}$
and
$\left[\begin{array}{ll}V_{1} & W_{1} \\ V_{2} & W_{2}\end{array}\right]=\frac{1}{\sqrt{D_{12}^{2}+D_{0}^{2}}}\left[\begin{array}{cc}D_{12} & -D_{0} \\ D_{0} & D_{12}\end{array}\right]$,
with
$D_{0} \equiv \sqrt{\left(\frac{D_{11}-D_{22}}{2}\right)^{2}+D_{12}^{2}}-\frac{D_{11}-D_{22}}{2}$.
D_{0} is positive, and the diffusion coefficients can be normalized to avoid incompatible physical dimensions. As D_{12}^{2} takes on values from 0 to its maximum permissible value $D_{11} D_{22}$, λ_{+}increases and λ_{-}decreases within the ranges
$0 \leq \lambda_{-} \leq \min \left(D_{11}, D_{22}\right)$
$\leq \max \left(D_{11}, D_{22}\right) \leq \lambda_{+} \leq D_{11}+D_{22}$.
The ratio $\left|D_{0} / D_{12}\right|$ can be either large or small. If $D_{11}>D_{22}$ then $D_{0}<\left|D_{12}\right|$, and letting $D_{12} \rightarrow 0$ (with fixed D_{11} and D_{22}) gives $D_{0} / D_{12} \rightarrow 0$. Conversely, if $D_{11}<D_{22}$, letting $D_{12} \rightarrow 0$ gives $D_{12} / D_{0} \rightarrow 0$.

2.4. Diagonalization by eigenvectors

Eq. (11) has an obvious resemblance to Eq. (2) with $D_{Q_{1} Q_{2}}=0$. The orthogonality of eigenvectors suggests imposing
$S_{1} S_{2}=-1$
on $\left(Q_{1}, Q_{2}\right)$, along with Eq. (4). This leads to quadratic equations for S_{1} and S_{2}, with solutions

https://daneshyari.com/en/article/8955798

Download Persian Version:

https://daneshyari.com/article/8955798

Daneshyari.com

[^0]: E-mail address: jay.albert@us.af.mil.
 http://dx.doi.org/10.1016/j.jastp.2017.08.008
 Received 26 April 2017; Received in revised form 6 July 2017; Accepted 9 August 2017
 Available online xxxx
 1364-6826/Published by Elsevier Ltd.

