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A B S T R A C T

Introduction: Technological solutions for quantifying Parkinson's disease (PD) symptoms may provide an ob-
jective means to track response to treatment, including side effects such as levodopa-induced dyskinesia. Vision-
based systems are advantageous as they do not require physical contact with the body and have minimal in-
strumentation compared to wearables. We have developed a vision-based system to quantify a change in dys-
kinesia as reported by patients using 2D videos of clinical assessments during acute levodopa infusions.
Methods: Nine participants with PD completed a total of 16 levodopa infusions, where they were asked to report
important changes in dyskinesia (i.e. onset and remission). Participants were simultaneously rated using the
UDysRS Part III (from video recordings analyzed post-hoc). Body joint positions and movements were tracked
using a state-of-the-art deep learning pose estimation algorithm applied to the videos. 416 features (e.g. kine-
matics, frequency distribution) were extracted to characterize movements. The sensitivity and specificity of each
feature to patient-reported changes in dyskinesia severity was computed and compared with physician-rated
results.
Results: Features achieved similar or superior performance to the UDysRS for detecting the onset and remission
of dyskinesia. The best AUC for detecting onset of dyskinesia was 0.822 and for remission of dyskinesia was
0.958, compared to 0.826 and 0.802 for the UDysRS.
Conclusions: Video-based features may provide an objective means of quantifying the severity of levodopa-in-
duced dyskinesia, and have responsiveness as good or better than the clinically-rated UDysRS. The results de-
monstrate encouraging evidence for future integration of video-based technology into clinical research and
eventually clinical practice.

1. Introduction

The current ability to measure levodopa-induced dyskinesia severity
and change in response to interventions in Parkinson's disease (PD)
relies on the use of clinical rating scales. Clinicians use rating scales
such as the Unified Dyskinesia Rating Scale (UDysRS) that are based on
characteristics including duration, anatomical distribution, and func-
tional impact of levodopa-induced dyskinesia. However, such rating
scales, although optimized and refined, are still inherently subjective
and can be significantly influenced by rater experience [1]. Further-
more, interpretation of symptoms can differ widely between patients
and physicians [2]. Technologies for measuring symptoms can provide

an objective means of evaluating dyskinesia. Wearable sensing has been
the most popular, with multiple studies demonstrating the ability to
predict clinical ratings with good accuracy [3–5]. While wearables can
be implemented in a discreet and wireless fashion, they require the
devices to be physically attached to the user, which can be inconvenient
and especially difficult to set up for individuals with PD. Monitoring of
multiple limbs also requires additional instrumentation to capture all
relevant movements. In contrast, video-based methods combined with
computer vision algorithms can monitor several body parts using a
single camera sensor, and accomplish monitoring without contact. The
computer vision field has seen significant improvements in accuracy
with the emergence of deep learning, allowing computational models to
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be built with substantially more representational power [6]. A problem
of interest in computer vision is human pose estimation, where 2D
human pose can be estimated from a single image. In our previous
study, a deep learning pose estimation algorithm was used to extract
motions from videos of PD assessments [7]. Features of the motion
trajectories were used to predict involuntary movement severity on the
UDysRS Part III (Impairment) [8].

Comparing predictions to ground truth clinical ratings provides
assurance that the sensor-based technology is capturing useful in-
formation. However, this method of clinimetric validation can be cri-
ticized as it does not take advantage of the improved sensitivity that
sensors have over subjective human raters [9,10]. Unfortunately, a
systematic review of monitoring technologies for PD was only able to
recommend nine of 73 screened devices based on sufficient testing and
clinimetric validation [11]. None of the recommended devices were
video-based. The only study of a video-based technology that was listed
for dyskinesia assessment was by Rao et al., who developed a severity
score based on movement amplitude and direction [12]. While they
showed moderate concurrent validity with UDysRS ratings, they did not
detail any exploratory feature analysis in score development. Some of
the video-based devices in the review analyzed the reliability of their
systems in addition to validity; however, none of the studies attempted
to measure responsiveness to treatment.

The goal of this study is to evaluate if features extracted from 2D
videos of clinical assessments are sensitive to patient reported changes
in dyskinesia. We have previously calculated the clinically important
change (CIC) in the UDysRS Part III using a levodopa infusion protocol
and an anchor-based approach [13]. In this study, the sensitivity and
specificity-based approach from our prior study is replicated with ob-
jective video-based features to assess their responsiveness to treatment.
Results show that video-based features are a promising complement to
clinical rating scales and warrant further investigation.

2. Methods

Information on study population and protocol is identical to [13],
which generated the current dataset.

In summary, inclusion criteria were: diagnosis of idiopathic PD as
per United Kingdom PD Society Brain Bank criteria [14]; 30–80 years of
age; stable bothersome levodopa-induced peak-dose dyskinesia for
more than 25% of the day, defined as a UPDRS 4.1 rating≥ 2 and Lang-
Fahn score≥ 1, and on stable antiparkinsonian medication for at least
one month in advance of study participation.

The exclusion criteria was: a Hoehn & Yahr score of 5 in “off” state;
UPDRS rating ≥3 for resting or action tremor when “off”; cognitive
impairment, defined as a score< 24 on the Montreal Cognitive
Assessment [15]; and previous surgery for PD.

Data was collected in a randomized, double-blind, placebo-con-
trolled crossover study, with a total of 4 visits over 7 ± 2 weeks. The
first visit was used for screening. Afterwards, there was a run-in, un-
blinded levodopa infusion visit designed to familiarize participants with
changes in dyskinesia severity and to reduce placebo effect. For visits 3
and 4, subjects were randomized to receive levodopa or placebo. All
three infusion visits were performed according to the classical in-
travenous (i.v.) levodopa infusion paradigm [16], with a washout
period of 1–2 weeks. Levodopa infusion rate was between 1.0 and
1.5 mg/kg/hr depending on daily oral levodopa-equivalent dose.

A video protocol, including items required to assess UDysRS Part III,
was administered at regular intervals during each infusion visit. An
exception was the dressing task, which was excluded due to the infusion
tubing. Participants omitted their PD medication for 12 h in advance of
the visit such that they would begin the protocol in the “practically-
defined off” state. The levodopa/placebo infusion lasted for 2 h, fol-
lowed by up to 2 h of post-infusion observation. Three clinically im-
portant events were established as anchors: onset, maximum intensity,
and remission of dyskinesia. Participants were queried every 15min to

determine if they were experiencing one of the anchors (“patient-re-
ported”). The video protocol was performed every 30min and when
anchors were reported. UDysRS Part III ratings were performed post-
hoc by three neurologists blinded to the visit and infusion time elapsed
(“physician-rated”). Ratings were averaged to produce a single score.

Videos were recorded with a consumer grade video camera at a
resolution of 480× 640 or 540× 960 and 30 frames per second. The
study protocol was approved by the University Health Network
Research Ethics Board and written informed consent was provided by
all participants.

The UDysRS includes tasks such as communication, drinking from a
cup, and ambulation. Previous analysis of the dataset indicated that
video-based features from the communication task were most pre-
dictive of dyskinesia severity [7,8]. Therefore, only features computed
from the communication task were used. Joint positions were extracted
from assessment videos using Convolutional Pose Machines (CPM), a
state-of-the-art human pose estimation algorithm [17]. CPM produced a
14-point skeleton annotating the location of the head, neck, shoulders
(Lsho, Rsho), elbows (Lelb, Relb), wrists (Lwri, Rwri), hips (Lhip, Rhip),
knees (Lkne, Rkne), and ankles (Lank, Rank) for each frame. Frame-by-
frame pose estimates were combined over time to form joint trajec-
tories.

Two pre-processing steps were taken to remove noise from trajec-
tories before feature extraction. Camera movement was determined by
detecting and tracking distinctive points in the background of the video.
Joint trajectories were stabilized by subtracting the camera movement
signal. Since pose estimates were produced individually for each frame,
large discontinuities could occur in joint trajectories if estimation was
temporarily poor. To identify discontinuities, frame-to-frame distance
was thresholded, and only segments containing poses CPM estimated
with high confidence (where the confidence was an output of CPM)
were kept. Gaps between segments were linearly interpolated.

The skeleton produced by CPM included a head annotation, but it
was not suitable for tracking head turning as it was positioned at the top
of the head. Instead, the head and neck annotations were used to in-
itialize a bounding box on the face, which was tracked using MEEM, a
general purpose object tracker [18]. The face trajectory (Face) replaced
the head and neck trajectories, leaving a total of 13 trajectories. Ad-
ditional information about preprocessing can be found in Ref. [8].

A total of 416 features were extracted, with 32 features extracted for
each joint trajectory. To ensure that features were comparable across
different participants and camera distances, all trajectories were nor-
malized by dividing by the respective participants' head length (i.e.
distance between the head and neck annotations). There were 15 ki-
nematic features, which were summary statistics, i.e. maximum,
median, mean, standard deviation (stdev), interquartile range (IQR), of
the speed, acceleration, and jerk. There were also 16 spectral features
that were computed from the power spectral density (PSD) of the dis-
placement (Disp) and velocity (Vel) signals, where the PSD described
the distribution of frequencies in the signal and was estimated using
Welch's periodogram. The spectral features were the peak magnitude,
entropy, total power, half point (the frequency dividing the PSD into
equal halves), and relative power in 0.5–1 Hz,> 2Hz,> 4Hz,
and> 6Hz power bands for both PSDs. The last feature was the convex
hull, which was a measure of the area that the joint moved within. As
the communication task was made of multiple parts (e.g. counting
backwards, conversation), the video was split, resulting in 2–4 shorter
clips. Features were computed in each clip and averaged to produce the
video's final feature set. The average length of a video was 31 s.

Differences in feature values were computed between time points.
To assess responsiveness, it must be determined whether features can
detect changes in patient-reported dyskinesia severity. Therefore, two
key differences were calculated: change between the start of the infu-
sion (“off” state) and reported onset of dyskinesia, and change between
reported onset and remission of dyskinesia. The difference between
non-anchor time points and the preceding anchor were considered “no
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