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Background:Mobilized resistance to colistin is evolving rapidly and its global dissemination poses a severe threat
to human health and safety. Transferable colistin resistance gene, mcr-3, first identified in Shandong, China, has
already been found in several countries in multidrug-resistant human infections. Here we track the spread of
mcr-3within 13 provinces in China and provide a complete characterization of its evolution, structure and func-
tion.
Methods: A total of 6497 non-duplicate samples were collected from thirteen provinces in China, from 2016 to
2017 and then screened for the presence ofmcr-3 gene by PCR amplification.mcr-3-positive isolates were ana-
lyzed for antibiotic resistance and by southern blot hybridization, transfer analysis and plasmid typing. We
then examined the molecular evolution of MCR-3 through phylogenetic analysis. Furthermore, we also charac-
terized the structure and function of MCR-3 through circular dichroism analyses, inductively coupled plasma
mass spectrometry (ICP-MS), liquid chromatography mass spectrometry (LC/MS), confocal microscopy and
chemical rescue tests.
Findings: 49 samples (49/6497= 0.75%) were mcr-3 positive, comprising 40 samples (40/4144= 0.97%) from
2017 and 9 samples (9/2353= 0.38%) from 2016. Overall, mcr-3-positive isolates were distributed in animals
and humans in 8 of the 13 provinces. Threemcr-3-positive IncP-type and onemcr-1-bearing IncHI2-like plasmids
were identified and characterized. MCR-3 clusters with PEA transferases from Aeromonas and other bacteria and
forms a phylogenetic entity that is distinct from the MCR-1/2/P(M) family, the largest group of transferable
colistin resistance determinants. Despite that the two domains of MCR-3 not being exchangeable with their
counterparts in MCR-1/2, structure-guided functional mapping of MCR-3 defines a conserved PE-lipid recogniz-
ing cavity prerequisite for its enzymatic catalysis and its resultant phenotypic resistance to colistin.We therefore
propose that MCR-3 uses a possible “ping-pong” mechanism to transfer the moiety of PEA from its donor PE to
the 1(or 4′)-phosphate of lipid A via an adduct of MCR-3-bound PEA. Additionally, the expression of MCR-3 in
E. coli prevents the colistin-triggered formation of reactive oxygen species (ROS) and interferes bacterial growth
and viability.
Interpretation:Our results provide an evolutionary, structural and functional definition ofMCR-3 and its epidemi-
ology in China, paving the way for smarter policies, better surveillance and effective treatments.

© 2018 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
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Research in Context
Evidence Before this Study

On July 18, 2018, we searched PubMed with the terms “mcr-3
and China [21 from local epidemiology]”, “MCR-3 and function [1
references]”, “MCR-3 and evolution [no references]”, for reports
published between January 2000 and July 2018. We did not
restrict our search by language of publication. Our search identi-
fied some group reported the sporadic cases ofMCR-3 in very con-
fined area and very limited in number in China. Evidently,
comprehensive epidemiology of MCR-3 remains unclear in
China. More importantly, we found no reports addressing mecha-
nisms ofMCR-3 action. Therefore, it is very necessary to elucidate
its potential spread, evolution and functional aspects of MCR-3
polymyxin resistance.Added Value of this Study

Our results represent a firstmulti-province study on the dissemina-
tion of MCR-3 in China. Also, we report the origin and possible
evolution of MCR-3. We have integrated multiple approaches to
systematically address the biochemical mechanism and physio-
logical roles of MCR-3 action.Implications of all the Available Evi-
dence

Our data shows that 49(49/6497 = 0.75%) isolates from 13
provinces in China, comprising 40 samples (40/4144 = 0.97%)
from 2017 and 9 samples (9/2353 = 0.38) from 2016, were
mcr-3 positive. This study suggests that the threat of mcr-3 to
public health should be assessed because of the potential preva-
lence of mcr-3. In addition, given that the resistance mechanism
of MCR-3 is similar to mcr-1, we suggest that further studies are
needed to clarify the evolutionary pattern ofmcr-3.

1. Introduction

Antimicrobial resistance (AMR) has become a global public health
priority. The accelerated development of multidrug resistance (MDR)
is attributed in part (if not completely) to the massive and inappro-
priate use of antimicrobials in agricultural and clinical settings.
Human infections caused by MDR pathogens result in over 70,000
deaths in the United States each year [1, 2]. In fact, a team led by
Prof. Lord Jim O'Neil has estimated that AMR could result in 10 mil-
lion deaths a year worldwide by 2050 [3]. Although the accuracy of
this frightening prediction is uncertain, we acknowledge the enor-
mous burden AMR causes at multiple levels (economic, social, clinical
and public health) [4]. This highlights the importance and urgency of
a coordinated international action to prevent and control the world-
wide spread of AMR [4, 5].

Polymyxins refer to an array of non-ribosomally-synthesized, cat-
ionic antimicrobial cyclic-peptides (CAMP) [6]. Among the five
known subtypes, polymyxin B and polymyxin E (Colistin) are exten-
sively used in agricultural production and clinical therapies [6–8].
Historically, the primary target of colistin is thought to be the neg-
atively charged lipid A moiety of lipopolysaccharides (LPS) on the
outer-leaflet of the bacterial outer membrane [9]. Despite its poten-
tial nephrotoxicity and neurotoxicity [6, 10–12], colistin is still used
for treatment as an ultimate line of defense against critical infec-
tions caused by MDR pathogens (esp. carbapenemase-producing En-
terobacteriaceae) [7, 13, 14]. However, an acquired resistance to
polymyxin has been frequently found in certain species of bacterial
pathogens like Klebsiella pneumoniae (K. pneumoniae) [15] and

Salmonella enterica (S. enterica) [16, 17]. The chemical mechanism
underlying the colistin resistance consistently involves bacterial
lipid A-centered surface remodeling, including i) The addition of 4-
amino-4-deoxy-L-arabinose in S. enterica [16, 17] and Pseudomonas
aeruginosa [18]; ii) The attachment of phosphoethanolamine (PEA)
in Neisseria [19], Acinetobacter baumannii [20] and Campylobacter
jejuni [21]; and iii) Glycine/diglycine modification in the pandemic
Vibrio cholerae biotype EI Tor [22–25]. Intrinsic resistance to poly-
myxin is limited to the originally-resistant population. However,
the recent emergence and global discovery of plasmid-borne mobi-
lized colistin resistance determinants (mcr-1) potentially threatens
the clinical effectiveness of colistin as a last-resort antibiotic against
carbapenem-resistant superbugs [26].

The mcr-1 gene product, MCR-1, is a PEA lipid A transferase, be-
longing to the “YhjW/YjdB/YijP” alkaline phosphatase super-family
[26, 27]. MCR-1 catalyzes the transfer of the PEA group from its
physiological donor phosphatidylethanolamine (PE) to the 1(4′)-
phosphate position of lipid A glucosamine (GlcN) moieties [19, 28,
29]. Structure-guided functional studies have determined this mech-
anism and demonstrated that the enzymatic activity of MCR-1 ren-
ders the recipient strains resistant to polymyxin [27, 30–35].
Intriguingly, the determinants of transferable colistin resistance
have extended beyond MCR-1, to a number of new MCR-like mem-
bers [36] (namely MCR-2 [37–39], MCR-3 [40], MCR-4 [41], MCR-5
[42], MCR-6 [Genbank no.: ASK49942] (Indeed, it is a MCR-1/2 pro-
genitor from Moraxella sp. MSG47-C17 [43], and exhibits high level
of homology to ICR-Mo of M. osloensis [44]. Thus, it is supposed to
be renamed as ICR-M), MCR-7 [45] and MCR-8 [46]), as well as
over a dozen of new heterogeneous MCR-1 variants (e.g., MCR-1.2
[47] and MCR-1.6 [48]). Unlike the predominant MCR-1 which is dis-
tributed world-wide [49], both MCR-2 (81% identity to MCR-1 and
originally found in Belgium [37, 38], and very recently detected in
pigs/poultries [39] and human vaginal swabs [50] from China) and
MCR-5 (only detected in Germany [42]) are thought to be two rare
members of the MCR-like protein family. This is slowly changing
with the discovery of MCR-2 and its variants in countries like China
[39]. As for MCR-4, it has been detected in a pig isolate of
S. enterica in Italy 2013 [41], swine isolates of E. coli from Spain
and Belgium in 2015–2016 [41], and clinical isolates of
carbapenemase-producing Enterobacter cloacae from Singapore in
2017 [51]. In terms of epidemiological/geographic distribution,
MCR-3 seems to be second only to MCR-1. Phylogenetic analysis in-
dicates that MCR-3 is evolutionarily distinct from MCR-1 and closely
clustered with chromosomally-encoded MCR-like proteins in certain
species of Aeromonas (Fig. 3) [52, 53]. To the best of our knowledge,
the new mcr-3 gene has been discovered in 3 of 7 continents, namely
Asia (China [40, 54], Singapore [51], Japan [55], Thailand [40] and
Malaysia [40]), Europe (Denmark [56, 57], France [58] and Spain
[59]) and North America (the United States [40]). Given that i) In
Europe, colistin is used to treat bacterial infections of livestock
(such as pigs, cows, and goats) [60]; and ii) Colistin is heavily sup-
plemented as a growth promoter of livestock (pigs and poultries)
in Asian countries (e.g., China, Japan, and Vietnam) [61], it is possible
that indiscriminate antibiotic use has selected for the emergence of
new colistin resistance determinants like mcr-3.

In fact, the growing body ofmcr-3 variants includesmcr-3.2 [D295E]
[40],mcr-3.3 [G373V] [40],mcr-3.4 [M23V],mcr-3.5 [T488I] [57, 58], and
mcr-3.7 [M23V, A457E, T488I] [54]. Most of them are located on IncHI2-
type plasmids, like pWJ-1 (~260 kb), IncP-like plasmid (~50 kb), F46:
A-: B20 IncF plasmid [58], respectively. The range of mcr-3-harboring
host bacteria includes E. coli [40, 54, 57–59], K. pneumoniae [40] and S.
typhimurium [40, 56]. Of note,mcr-3-bearing bacteria in Europe are fre-
quently prevalent in either human infections [40, 56] (even blood-
stream infections [57]) or epidemic MDR lineages of E. coli (ST744 [58]
and ST131 [57]). To our surprise, mcr-3 has been found to coexist with
mcr-1 [56, 59] (or mcr-4 [51]) in a single cell, in MDR pathogens [56,
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