ARTICLE IN PRESS

Diabetes & Metabolic Syndrome: Clinical Research & Reviews xxx (2018) xxx-xxx

Contents lists available at ScienceDirect

Diabetes & Metabolic Syndrome: Clinical Research & Reviews

journal homepage: www.elsevier.com/locate/dsx

Original Article

Increased malondialdehyde vs. reduced sirtuin 1 in relation with adiposity, atherogenicity and hematological indices in metabolic syndrome patients with and without prediabetes

Samar Abu Rkhaya, Nailya Bulatova, Violet Kasabri*, Randa Naffa, Reema Alquoqa

Schools of Pharmacy and Medicine, University of Jordan, Queen Rania Street, Amman, 11942, Jordan

ARTICLE INFO

Article history: Available online xxx

Keywords:
Sirtuin1
Malondialdehyde
Type 2 diabetes mellits
Metabolic syndrome
Adiposity indices
Hematology indices
Atherogenicity indices

ABSTRACT

Background: Sirtuin 1 (SIRT 1) and malondialdehyde (MDA) were implicated in metabolic syndrome (MetS) and type 2 diabetes mellitus (T2DM) pathophysiology.

Aims and methods: This cross-sectional study aimed to investigate both SIRT 1 and MDA in 30 lean healthy control, 31 normoglycemic MetS subjects and 30 MetS-Pre/T2DM drug naïve. C orrelation studies were established for both biomarkers with adiposity indices [conicity index (CI), waist circumference (WC), weight-to-height (WHtR) ratio, weight-to-hip (WHR) ratio, hip circumference (HC), and body adiposity index (BAI)], hematological indices [red cell distribution width (RDW), mean platelet volume (MPV), platelet-to-lymphcyte ratio (PLR), neutrophil-to-lymphocyte ratio (NLR), monocyte-to-lymphocyte ratio (MLR)] and atherogenicity indices (atherogenicity index of plasma (AIP = log₁₀TG/HDL-C ratio), TC/HDL-C and LDL-C/HDL-C ratios].

Results: SIRT1 levels (ng/mL) were markedly lower in both MetS groups (2.12 ± 0.06 and 2.32 ± 0.19 , respectively, vs. controls 4.73 ± 0.15 ; P < 0.05). Conversely, a gradual increase in MDA levels (μ M) was attained (MetS 72 ± 3.3 and MetS pre-T2DM 81 ± 6.1 vs. controls 62 ± 3.5 ; P > 0.05). A significant inverse MDA-SIRT1 relationship was observed (P = 0.006). SIRT1 correlated inversely with all the studied adiposity (WC: P < 0.001, HC: P < 0.001, WHR: P < 0.001, C-index: P < 0.001, BAI: P < 0.001) and atherogenicity indices (AIP: P < 0.001, TC/HDL-C: P < 0.001, LDL-C/HDL-C: P < 0.001) as well as MPV (P < 0.01). Whereas MDA directly with WHtR, CI and BAI (WC: P < 0.01, HC: P < 0.05, BMI: P < 001, WHtR: P < 0.001, C-index: P < 0.005, BAI: P < 0.01).

 ${\it Conclusion:} \ The \ substantial \ variations \ and \ correlations \ emphasize \ a \ potential \ molecular \ role \ of \ SIRT1 \ and \ MDA \ in \ the \ pathophysiology \ of \ MetS \ and \ pre/T2DM.$

© 2018 Diabetes India. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Sirtuin 1 (SIRT1) is a NAD+-dependent deacetylase for many nuclear histones and transcription factors. Hence, it acts as an energy sensor through NAD levels fluctuation [1]. SIRT1 plays a crucial role in the overall net metabolic picture of the body. It promotes cholesterol catabolism [2], suppresses both of fat storage and anabolism [3], facilitates insulin secretion [4] and signaling [5], enhances adiponectin expression and inhibits genetic translation of several inflammatory mediators [5–6]. A significant decline in SIRT1 levels was linked to metabolic syndrome (MetS) components with a marked higher declining in components grouping [7]. More importantly, SIRT1 levels

reduction was found to be associated with subclinical atherosclerosis in MetS patients [7]. However, malondialdehyde (MDA) is produced in the body from arachidonic acid either enzymatically along with thromboxane A2 or non-enzymatically by peroxidation. MDA has a strong electrophilic character consequently, it binds to protein changing its conformation, and hence, disrupting its biological function [8]. In addition, MDA acts as a signal messenger regulating gene expression of glucose-stimulated insulin secretion key regulators. This could explain how lipid peroxidation can produce hyperinsulinemia [9]. Moreover, MDA elevates directly with type 2 diabetes mellitus (T2DM) duration [10]. Lipid ratios are appealing and practical metabolic parameters with an acceptable sensitivity and specificity. Obviously, these ratios were associated with cardiovascular risk in T2DM [11]. Visceral obesity can be simply and non-invasively estimated using waist circumference (WC), hip circumference (HC), waistto-hip ratio (WHR), waist-to-height ratio (WHtR). Conicity index

E-mail address: hotice162@gmail.com (V. Kasabri).

http://dx.doi.org/10.1016/j.dsx.2018.05.013

1871-4021/© 2018 Diabetes India. Published by Elsevier Ltd. All rights reserved.

Please cite this article in press as: S.A. Rkhaya, et al., Increased malondialdehyde vs. reduced sirtuin 1 in relation with adiposity, atherogenicity and hematological indices in metabolic syndrome patients with and without prediabetes, Diab Met Syndr: Clin Res Rev (2018), https://doi.org/10.1016/j.dsx.2018.05.013

^{*} Corresponding author.

ARTICLE IN PRESS

S.A. Rkhaya et al./Diabetes & Metabolic Syndrome: Clinical Research & Reviews xxx (2018) xxx-xxx

Table 1
Diagnostic criteria of MetS (IDF [20]).

Criteria	Diagnosis		
Central obesity	Waist circumference \geq 94 cm in men or \geq 80 cm in women.		
Elevated triglycerides	≥ 150 mg/dl, or specific treatment for this lipid abnormality		
Low HDL-C	< 40 mg/dl in men		
	or < 50 mg/dl in women or specific treatment for this lipid abnormality		
Elevated blood pressure	Systolic ≥ 130 mm Hg and/or		
	Diastolic \geq 85 mm Hg.		
	Or treatment of previously diagnosed hypertension.		
Elevated fasting plasma glucose	≥100 mg/dl or previously diagnosed T2DM		

^{*} for Eastern Mediterranean and Middle East (Arab) populations IDF uses European data until more specific data are available. *if body mass index (BMI) is above 30, central obesity can be assumed.

(CI) is introduced as a novel visceral obesity marker that enables direct comparison between individuals and even populations [12]. Body adiposity index (BAI) was recently proposed as a unified total body fat percent estimator irrespective to gender and ethnicity [13]. Therefore, CI, BAI, WHR and WHtR are considered as good predictors of cardiovascular risk. However, their discrimination varies among populations [14–18].

Mean platelet volume (MPV), red cell distribution width (RDW), platelet-to-lymphocyte ratio (PLR), monocyte-to-lymphocyte ratio (MLR), and neutrophil-to-lymphocyte ratio (NLR) introduced as non-expensive hematological indices indicate systemic inflammation.

The study aimed to compare both MDA and SIRT1 plasma levels in normoglycemic MetS and pre-diabetic or newly diagnosed

 Table 2

 Comparison of clinical characteristics, adiposity, atherogenicity and hematological indices between study groups.

	Control group, N = 30 Mean \pm S.E	MetS group, N = 31 Mean \pm S.E	MetS pre/T2DM, N = 30 Mean \pm S.E	P-value	P^1	P ²	P ³
			Gender				
Female, N (%)	17(56.7%)	15(48.4%)	16(53.3%)	0.808			
Male, N (%)	13(43.2%)	16(51.6%)	14(46.7%)				
Age, years	31.1 ± 1.7	44.5 ± 2.0	51.8 ± 2.0	< 0.001			
		Clinical parame	ters and molecular metabolic b	iomarkers			
MDA, µM	62 ± 3.5	72 ± 3.3	81 ± 6.1	0.085	0.211	0.218	0.4
•	N=28	N = 30	N = 30				
SIRT1, ng/mL	4.73 ± 0.15	2.12 ± 0.06	2.32 ± 0.19	< 0.00001	< 0.001	< 0.001	0.318
. 01	N=29	N=29	N = 30				
SBP, mmHg	112 ± 3.2	132 ± 2.6	$\textbf{131.3} \pm \textbf{2.9}$	< 0.001	< 0.001	< 0.001	1
DBP, mmHg	70 ± 2.1	80 ± 1.7	81 ± 2	0.001	0.002	0.003	1
FBG, mg/dL	$\textbf{85.7} \pm \textbf{5}$	91.3 ± 4.1	122 ± 4.6	< 0.001	1	< 0.001	< 0.001
HbA1C %	$\textbf{5.12} \pm \textbf{0.1}$	$\textbf{5.2} \pm \textbf{0.1}$	6.4 ± 0.1	< 0.001	1	< 0.001	< 0.001
TG, mg/dL	$\textbf{63.9} \pm \textbf{19.4}$	186.8 ± 15.9	211 ± 18	< 0.001	< 0.001	< 0.001	0.889
LDL-C, mg/dL	97.6 ± 7.3	121.8 ± 6	134 ± 6.8	0.007	0.048	0.005	0.483
HDL-C, mg/dL	47.6 ± 2.9	42.6 ± 2.4	39.5 ± 2.7	0.194	0.608	0.214	1
TC, mg/dL	159 ± 8.2	201 ± 6.7	215.6 ± 7.7	< 0.001	0.001	< 0.001	0.477
			Adiposity indices				
WC, cm	$\textbf{78.4} \pm \textbf{1.9}$	103 ± 1.55	105.5 ± 1.76	< 0.001	< 0.001	< 0.001	0.971
HC, cm	93.65 ± 2.2	115.8 ± 1.7	119 ± 1.97	< 0.001	< 0.001	< 0.001	0.451
BMI, kg/m ²	21.4 ± 0.97	33.5 ± 0.79	34.5 ± 0.9	< 0.001	< 0.001	< 0.001	1
WHR	$\textbf{0.84} \pm \textbf{0.015}$	$\boldsymbol{0.89 \pm 0.012}$	$\boldsymbol{0.89 \pm 0.014}$	0.028	0.024	0.138	1
WHtR	$\textbf{0.48} \pm \textbf{0.011}$	$\textbf{0.62} \pm \textbf{0.009}$	0.63 ± 0.01	< 0.001	< 0.001	< 0.001	1
C-index	$\textbf{1.21} \pm \textbf{0.014}$	$\textbf{1.27} \pm \textbf{0.011}$	1.28 ± 0.013	0.004	0.008	0.007	1
BAI	26.3 ± 1.34	35.4 ± 1.1	$\textbf{36.8} \pm \textbf{1.24}$	< 0.001	< 0.001	< 0.001	1
			Atherogenicity indices				
AIP	0.2 ± 0.5	0.6 ± 0.04	0.7 ± 0.05	< 0.001	< 0.001	< 0.001	1
TC/HDL-C	$\textbf{3.4} \pm \textbf{0.8}$	5 ± 0.7	6.6 ± 0.7	0.041	0.427	0.037	0.320
LDL-C/HDL-C	2.1 ± 0.68	3 ± 0.6	4.3 ± 0.6	0.11	1	0.128	0.366
			Hematological indices				
RDW	13.5 ± 0.2	13.5 ± 0.2	13.8 ± 0.2	0.436	1	0.904	0.689
MPV, fL	7 ± 0.4	9.1 ± 0.3	$\textbf{8.7} \pm \textbf{0.4}$	0.001	0.001	0.025	1
MLR	$\textbf{0.3} \pm \textbf{0.04}$	0.3 ± 0.03	$0.2 {\pm}.04$	0.515	1	0.844	1
NLR	2.36 ± 0.4	1.9 ± 0.3	2 ± 0.4	0.662	1	1	1
PLR	104 ± 9.1	121.6 ± 7.4	97 ± 8.5	0.59	0.47	1	0.026

 $^{^{}a}$ Covariate appearing in the model is evaluated at the following value: age = 42.73.

Pairwise comparisons were done through Bonferroni adjustment.

Adjusted mean and P-value obtained by ANCOVA test.

Age analysis by ANOVA test, Levene,s test P-value = 0.305.

Gender analysis by Chi square.

DPB: diastolic blood pressure, FBG: fasting blood glucose, HbA1C%: percent glycosylated- hemoglobin, HDL-C: high density lipoprotein-cholesterol, LDL-C: low density lipoprotein-cholesterol, MDA: malondialdehyde, SBP: systolic blood pressure, SIRT1: sirtuin1, TG: triglycerides, TC: total cholesterol, WC: waist circumference, HC: hip circumference, WHR: waist-to-hip ratio, WHtR: waist-to-height ratio, C-index: conicity index, BAI: body adiposity index, RDW: red cell width, MPV: mean platelet volume, PLT: platelet, MLR: monocyte-to-lymphocyte ratio, NLR: neutrophil-to-lymphocyte ratio, PLR: platelet-to-lymphocyte ratio.

Please cite this article in press as: S.A. Rkhaya, et al., Increased malondialdehyde vs. reduced sirtuin 1 in relation with adiposity, atherogenicity and hematological indices in metabolic syndrome patients with and without prediabetes, Diab Met Syndr: Clin Res Rev (2018), https://doi.org/10.1016/j.dsx.2018.05.013

2

P¹ MetsS group versus control, P²MetS pre/T2DM versus control, P³ MetS pre/T2DM versus MetsS.

Download English Version:

https://daneshyari.com/en/article/8957020

Download Persian Version:

https://daneshyari.com/article/8957020

<u>Daneshyari.com</u>