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A B S T R A C T

Many recent literature studies have revealed interesting dynamics patterns of functional brain networks derived
from fMRI data. However, it has been rarely explored how functional networks spatially overlap (or interact) and
how such connectome-scale network interactions temporally evolve. To explore these unanswered questions, this
paper presents a novel framework for spatio-temporal modeling of connectome-scale functional brain network
interactions via two main effective computational methodologies. First, to integrate, pool and compare brain
networks across individuals and their cognitive states under task performances, we designed a novel group-wise
dictionary learning scheme to derive connectome-scale consistent brain network templates that can be used to
define the common reference space of brain network interactions. Second, the temporal dynamics of spatial
network interactions is modeled by a weighted time-evolving graph, and then a data-driven unsupervised learning
algorithm based on the dynamic behavioral mixed-membership model (DBMM) is adopted to identify behavioral
patterns of brain networks during the temporal evolution process of spatial overlaps/interactions. Experimental
results on the Human Connectome Project (HCP) task fMRI data showed that our methods can reveal meaningful,
diverse behavior patterns of connectome-scale network interactions. In particular, those networks’ behavior
patterns are distinct across HCP tasks such as motor, working memory, language and social tasks, and their dy-
namics well correspond to the temporal changes of specific task designs. In general, our framework offers a new
approach to characterizing human brain function by quantitative description for the temporal evolution of spatial
overlaps/interactions of connectome-scale brain networks in a standard reference space.

Introduction

Recently, increasing evidence from neuroscience research has sug-
gested that functional brain networks are intrinsically dynamic on mul-
tiple timescales. Even in the resting state, the brain undergoes dynamical
changes of functional connectivity (Chang and Glover, 2010; Smith et al.,
2012; Majeed et al., 2011; Gilbert and Sigman, 2007; Ekman et al., 2012;
Zhang et al., 2013, 2014; Keilholz, 2014; Li et al., 2014). Thus, compu-
tational modeling and characterization of time-dependent functional
connectome dynamics and elucidating the fundamental temporal attri-
butes of these connectome-scale interactions are of great importance to
better understand the brain's function. In the literature, a variety of ap-
proaches have been proposed to examine the dynamics of functional
brain connectivities, such as ROI-based methods (e.g, Zhu et al., 2016; Li
et al., 2014; Zhang et al., 2013, 2014; Ou et al., 2014; Kucyi et al., 2015;

Shakil et al., 2016; Xu et al., 2016b; Thompson and Fransson, 2015;
Kennis et al., 2016) and independent component analysis (ICA) based
methods (e.g., Calhoun et al., 2001; Kiviniemi et al., 2009; Damoiseaux
et al., 2006; Allen et al., 2014). In these approaches, the time series of
pre-selected ROIs or brain network components extracted from ICA are
employed to model temporal brain dynamics. For instance, based on the
ROIs defined by the Dense Individualized and Common
Connectivity-based Cortical Landmarks (DICCCOL) (Zhu et al., 2013),
functional connectomes based on resting-state fMRI data have been
divided into temporally quasi-stable segments via a sliding time window
approach. Then, dictionary learning and sparse representation were used
to identify common and different functional connectomes across healthy
controls and PTSD patients (Li et al., 2014) and to differentiate the brain's
functional status into task-free or task performance states (Zhang
et al., 2013).
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Despite that previous studies have revealed interesting dynamics
patterns of functional brain networks themselves, however, it has been
rarely explored how functional networks spatially overlap or interact with
each other, and it has been largely unknown how such connectome-scale
network interactions temporally evolve. In the neuroscience field, a va-
riety of recent studies suggested that spatial overlap of functional net-
works derived from fMRI data is a fundamental organizational principle
of the human brain (e.g., Fuster, 2009; Harris and Mrsic-Flogel, 2013; Xu
et al., 2016a). In general, the fMRI signal of each voxel reflects a highly
heterogeneous mixture of functional activities of the entire neuronal
assembly of multiple cell types in the voxel. In addition to the hetero-
geneity of neuronal activities, the convergent and divergent axonal
projections in the brain and heterogeneous activities of intermixed
neurons in the same brain region or voxel demonstrate that cortical mi-
crocircuits are not independent and segregated in space, but they rather
overlap and interdigitate with each other (Harris and Mrsic-Flogel, 2013;
Xu et al., 2016a). For instance, researchers have explicitly examined the
extensive overlaps of large-scale functional networks in the brain (Her-
mansen et al., 2007; Fuster, 2009; Fuster and Bressler, 2015). Several
research groups have reported that task-evoked networks, such as in
emotion, gambling, language and motor tasks, have large overlaps with
each other (e.g., Hermansen et al., 2007; Fuster, 2009; Fuster and
Bressler, 2015; Xu et al., 2016a). Thus, development of effective
computational methods that can faithfully reconstruct and model the
spatial overlap patterns of connectome-scale functional networks is of
significant importance.

Recently, in order to effectively decompose the fMRI signals into
spatially overlapping network components, we developed and validated
a computational framework of sparse representations of whole-brain
fMRI signals (Lv et al., 2015a, 2015b) and applied it to the HCP
(Human Connectome Project) fMRI data (Q1 release) (Barch et al., 2013).
The basic idea of our framework is to aggregate all of the hundreds of
thousands of fMRI signals within the whole brain of one subject into a big
data matrix (e.g., a quarter million voxels � one thousand time points),
which is subsequently factorized into an over-complete dictionary basis
matrix (each atom representing a functional network) and a reference
weight matrix (representing this network's spatial volumetric distribu-
tion) via an efficient online dictionary learning algorithm (Mairal et al.,
2010). Then, the time series of each over-complete basis dictionary
represents the functional activities of a brain network and its corre-
sponding reference weight vector stands for the spatial map of this brain
network. A particularly important characteristic of this framework is that
the reference weight matrix naturally reveals the spatial overlap and
interaction patterns among those reconstructed brain networks. Our
extensive experiments (Lv et al., 2015a, 2015b) demonstrate that this
novel methodology can effectively and robustly uncover
connectome-scale functional networks, including both task-evoked net-
works (TENs) and resting-state networks (RSNs) from task-based fMRI
(tfMRI) data that can be well-characterized and interpreted in spatial and
temporal domains. Extensive experiments also demonstrated the supe-
riority of this methodology over other popular fMRI data modeling
methods such as ICA and GLM (general linear model) (Lv et al., 2015a,
2015b). Experimental results on the HCP Q1 data show that these
well-characterized networks are quite reproducible across different tasks
and individuals and they exhibit substantial spatial overlap with each
other, thus forming the Holistic Atlases of Functional Networks and In-
teractions (HAFNI) (Lv et al., 2015a, 2015b). This computational
framework of sparse representation of whole-brain fMRI data provides a
solid foundation to investigate the temporal dynamics of
connectome-scale network interactions derived by sparse dictionary
learning algorithms in this paper.

To leverage the dictionary learning and HAFNI methods' superiority
in reconstructing spatially overlapping functional networks while
significantly advancing them towards modeling temporal brain dynamics,
this paper presents a novel framework for spatio-temporal modeling of
connectome-scale functional brain network interactions via two main

effective computational schemes. First, we designed a novel group-wise
dictionary learning framework to derive connectome-scale consistent
brain network templates that can be used to define the common reference
space of brain networks and their interactions across fMRI scans and
across different brains, in order to integrate, pool and compare these
corresponding brain networks across individuals and their cognitive
states under task performances. Second, the temporal dynamics of spatial
network overlaps or interactions is computationally modeled by a
weighted time-evolving graph, and then a data-driven unsupervised
learning algorithm based on the dynamic behavioral mixed-membership
model (DBMM) (Rossi et al., 2013) is adopted to identify behavioral
patterns of brain networks during the temporal evolution processes of
spatial overlaps/interactions. Extensive experimental results on four
different HCP task fMRI datasets showed that our methods can effectively
reveal meaningful, diverse behavior patterns of connectome-scale
network interactions. In particular, those networks’ behavior patterns
are distinct across four HCP tasks including motor, working memory,
language and social tasks, and their dynamics well correspond to the
temporal changes of specific task designs. In general, our framework
offers a new approach to characterizing human brain function by quan-
titative description for the temporal evolution of spatial over-
laps/interactions of connectome-scale brain networks in a standard
reference space.

Materials and methods

Overview

As shown in Fig. 1, the computational pipeline of the proposed
framework consists of five main steps. In the first step, the whole-brain
tfMRI time series of each subject are segmented into multiple over-
lapped sliding windows (Agcaoglu et al., 2016; Li et al., 2014), in order to
capture the temporal dynamics of functional brain networks. Then, the
tfMRI data in each window from each subject in HCP Q1 release are
temporally concatenated to obtain corresponding group-wise tfMRI time
series segments. In the second step, based on the temporally concate-
nated sparse coding (Lv et al., 2016), we extract the group-wise local
temporal dynamics and the corresponding spatial profiles of functional
brain networks at the same time, represented by the dictionary and the
sparse weighting coefficients, respectively. In the third step, an affinity
propagation (AP)-based hierarchical clustering method is proposed to
generate the common group-wise functional networks (GFNs) from the
spatial maps (or network components) learned in the second step. In the
fourth step, spatio-temporal dynamics of functional interactions among
brain networks is modeled by a weighted time-evolving graph that in-
corporates connectivity relationships of the brain networks into a hier-
archical structure, where each layer describes the spatial interactions
among the GFNs in each sliding window and the sequence of layers
represents dynamic change of the network interactions over time. At last,
the behavioral roles of each GFN are identified by the effective
DBMM-based role detection algorithm (Rossi et al., 2013), to model and
characterize its spatio-temporal dynamic behaviors.

For the detailed description of the proposed methods in this paper,
the following definitions and notations are used.

siði ¼ 1;2;⋯mjÞ The i-th sliding window.
jsij The size of si.
Xi ði ¼ 1; 2;⋯mjÞ Concatenated input matrix for si.
Di ¼ ½d1; d2⋯dP�; ði ¼ 1; 2;⋯mjÞ Dictionary.
dqðq ¼ 1;2;⋯p) Atom in the dictionary.
αiði ¼ 1; 2;⋯mjÞ Coefficient matrix.
GFNj The j-th group-wise functional network.
FNCk;p The p-th functional network component occurring in sk.
TEG ¼ ðV; EÞ Time-evolving graph with vertex set V and edge set E.
eijk Edge between the vertices GFNi and GFNj in the k-th layer of TEG
wij
k Weight of the edge eijk .

Fk 2 ℝN�f ðk ¼ 1; 2;⋯MÞ Feature matrix of the k-th layer of TEG.
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