NeuroImage xxx (2017) 1-10

journal homepage: www.elsevier.com/locate/neuroimage

Contents lists available at ScienceDirect

Neurolmage

Neurolmage

Co-activation patterns in resting-state fMRI signals

Xiao Liu®™", Nanyin Zhang >, Catie Chang ¢, Jeff H. Duyn ¢

@ Department of Biomedical Engineering, The Pennsylvania State University, PA, USA
Y Institute for CyberScience, The Pennsylvania State University, PA, USA
¢ The Huck Institutes of Life Sciences, The Pennsylvania State University, PA, USA

4 Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda,

MD, USA

ARTICLE INFO ABSTRACT

The brain is a complex system that integrates and processes information across multiple time scales by dynam-
ically coordinating activities over brain regions and circuits. Correlations in resting-state functional magnetic
resonance imaging (rsfMRI) signals have been widely used to infer functional connectivity of the brain, providing
a metric of functional associations that reflects a temporal average over an entire scan (typically several minutes
or longer). Not until recently was the study of dynamic brain interactions at much shorter time scales (seconds to
minutes) considered for inference of functional connectivity. One method proposed for this objective seeks to
identify and extract recurring co-activation patterns (CAPs) that represent instantaneous brain configurations at
single time points. Here, we review the development and recent advancement of CAP methodology and other
closely related approaches, as well as their applications and associated findings. We also discuss the potential
neural origins and behavioral relevance of CAPs, along with methodological issues and future research directions
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in the analysis of fMRI co-activation patterns.

Introduction

The advent of resting-state functional magnetic resonance imaging
(rsfMRI) has significantly improved our understanding of the organiza-
tion of large-scale brain networks in health and disease (Biswal et al.,
1995; Fox and Raichle, 2007; Zhang and Raichle, 2010). The rapid
growth of resting-state research stemmed from the observation that
temporal correlations between spontaneous fMRI signals of different
brain regions correspond well with known functional connections and
networks. Resting-state connectivity is conventionally assessed by
computing temporal correlations over an entire scan, which is typically
several (and possibly tens of) minutes long. While this “static” connec-
tivity analysis reveals core functional systems and shows similar infor-
mation as structural brain connectivity (Greicius et al., 2009; Honey
et al., 2009), it neglects time-varying information in resting-state fMRI
signals that may provide further information about brain function
(Hutchison et al., 2013).

Efforts to extract and quantify time-varying information in resting-
state fMRI data have opened up a new area of research on “dynamic”
resting-state functional connectivity (DFC) and accompanying method-
ology. Among the existing set of DFC methods, one approach deviates

from conventional time-domain approaches by regarding single fMRI
volumes at individual time points, instead of fMRI time courses, as basic
units of analysis, and focusing on recurring co-activation patterns (CAPs)
of the brain and their variability over time. Whereas several excellent
reviews describe DFC methods and their applications more generally
(Hutchison et al., 2013; Preti et al., 2017), a dedicated survey of CAP
analysis is absent to date. Here, we aim to fill this gap by 1) elucidating
the basic rationale behind the CAP analysis and its relation to rsfMRI
connectivity, 2) surveying variants of CAP analysis methods and their
applications, focusing particularly on the aim of understanding global
signal variations, 3) examining similarities and dissimilarities between
the CAP method and other related DFC approaches, 4) discussing po-
tential neuronal correlates of transient CAP events, 5) identifying issues
and limitations of the CAP method that researchers should be cautious
about, and 6) proposing potential directions for future research in this
area. These topics will be organized into separate sections below.

Temporal decomposition of resting-state data into co-activation
patterns

Early explorations of the time-varying nature of rsfMRI connectivity
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applied sliding-window and time-frequency coherence analyses (Chang
and Glover, 2010; Hutchison et al., 2012; Sakoglu et al., 2010). These
and related approaches examine rsfMRI correlation/coherence within
time windows (often 1-2min) much shorter than a typical scanning
session, aiming at uncovering more transient interactions between brain
areas. However, most approaches for such “dynamic” connectivity ana-
lyses are still based on pairwise relationships between fMRI time series.
Though very straightforward, these time-domain methods have limita-
tions for quantifying fMRI data, which typically has orders of magnitude
more voxels (N) than time points (T). If pairwise correlations were
calculated for all possible voxel pairs, the resulting cross-correlation
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matrix would have orders of magnitude more elements (N x (N—1)/2,
considering its symmetry) than actual measurements N x T, with a
maximal rank T—1 much lower than its size N. This rank-deficit matrix
would represent a very redundant quantification of data covariance.
Likewise, resting-state networks (RSNs) typically comprise thousands of
brain voxels but are derived from correlations computed over [often]
only hundreds of time points. The discordance between spatial and tem-
poral dimensions simply suggests that the pairwise correlations between
two voxels is actually accompanied by co-variation of a much larger
number of brain voxels. The presence of covariation across large sets of
voxels is the rationale behind the practice of using much larger brain
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Fig. 1. Three major methods that focus on co-activation events in resting-state fMRI. (A) Two task-unrelated activation events detected by the parameter free mapping (PFM) and their
spatial patterns. The activation and deactivation events are detected from fMRI signals of a representative subject as spikes in activation time series (ACT) derived using the PFM (black and
red traces in the top panel). In addition to those evoked by visually cued tapping (VCT) and self-paced tapping (SPT) tasks, there were also two task-unrelated activation events (RSA and
RSB) were detected in the positive ACT. The spatial activation patterns of the RSA and RSB are derived using the PFM and general linear modal (GLM) and shown in the bottom panel. All
panels in (A) are adapted from (Gaudes et al., 2011). (B) Point process analysis (PPA) identifies supra-threshold events in fMRI signals. The point process events (red dots in the top panel)
were defined as time points where the normalized fMRI signals cross a threshold of 1 (red dashed line in the first row) from below. These events coincide well with the peaks of
de-convolved fMRI signals derived using either the hemodynamic response function (HRF) or the rBeta function (the second row of the top panel). Conditional rate maps of these events
(the right three columns of the bottom panel), which indicate the probability of seeing such events at different brain regions conditional on seeing one at a given seed, show very similar
network patterns as those derived by probabilistic ICA (the left column of the bottom row). All panels in (B) are adapted from (Tagliazucchi et al., 2012a). (C) Co-activation patterns (CAPs)
and dynamic resting-state fMRI connectivity. Thirteen examples of single fMRI volumes show clear instantaneous patterns of brain co-activations that even include thalamic nuclei and
hippocampus (the third row). They are corresponding to black solid circles shown in the normalized fMRI signal from the posterior cingulate cortex (PCC) region (the second row with a
unit of standard deviation (S.D.)). Seed-based correlation maps (the top row) within four short time windows (16.1's, 7 fMRI volumes) are largely determined by instantaneous brain
co-activation patterns of included time points. For example, the presence of ventral posterolateral nucleus (VPL) in one of the sensorimotor maps is attributed to the co-activation at the
time point 3, and the presence of the amygdala (AMY) and hippocampus (HP) in one of the PCC maps can be explained by the instantaneous pattern at time point 11. CAPs were derived by
grouping all time points into subgroups using clustering and then taking the means (centroids) of these subgroups (the bottom row).
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