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The application of machine learning methods to neuroimaging data has fundamentally altered the field of
cognitive neuroscience. Future progress in understanding brain function using these methods will require
addressing a number of key methodological and interpretive challenges. Because these challenges often remain
unseen and metaphorically “haunt” our efforts to use these methods to understand the brain, we refer to them as
“ghosts”. In this paper, we describe three such ghosts, situate them within a more general framework from
philosophy of science, and then describe steps to address them. The first ghost arises from difficulties in deter-
mining what information machine learning classifiers use for decoding. The second ghost arises from the interplay
of experimental design and the structure of information in the brain - that is, our methods embody implicit as-
sumptions about information processing in the brain, and it is often difficult to determine if those assumptions are
satisfied. The third ghost emerges from our limited ability to distinguish information that is merely decodable
from the brain from information that is represented and used by the brain. Each of the three ghosts place limits on
the interpretability of decoding research in cognitive neuroscience. There are no easy solutions, but facing these
issues squarely will provide a clearer path to understanding the nature of representation and computation in the
human brain.

1. Introduction: data, pattern, theory

Textbooks present scientific confirmation as a matter of fitting theory
to data. Savvy philosophers and scientists have long known better. High-
level theories do not make direct predictions about data. To borrow a
framework from philosophy of science, scientific inference is not a one-
step process from data to theory but a two-step process from data to
phenomenon to theory (Bogen and Woodward, 1988; Suppes, 1962). For
example, the Standard Model in physics is not tested directly against the
voluminous data from particle colliders. Instead, that collider data is
processed to give evidence for some stable, replicable phenomenon — Z°
decay, for example — and then the Standard Model is checked to see if it
can account for that phenomenon. Similarly, plate tectonics did not

explain magnetometer readings but rather the spreading of the mid-Atlantic
ridge. General relativity did not explain a series of telescopic observations
but the precession of Mercury.

So too with various types of data in cognitive neuroscience. What one
typically aims to explain is not raw data itself (e.g., changes in BOLD
signal), or even a particular set of results from a single experiment.
Rather, the goal is arguably to uncover and explain stable and replicable
patterns of activation in response to a stimulus or task. It is of only mild
interest that inferior temporal (IT) cortex was activated in this or that
experiment. It is, however, of great importance that IT cortex is reliably
activated by a wide variety of object recognition tasks.

Many early critiques of neuroimaging focused on these two inferential
steps as they applied to univariate analyses of brain activation. Insofar as
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simple univariate analyses seemed problematic, it was precisely because
of weak links in the inference from data to replicable phenomenon (Klein,
2010; Logothetis et al., 2001; Nair, 2005; Poldrack, 2006). At the same
time as the weaknesses in univariate analyses were becoming apparent,
developments in machine learning techniques were changing the world of
science, technology, medicine, and industry (Jordan and Mitchell, 2015).
Perhaps unsurprisingly, machine learning methods have also found their
way into cognitive neuroscience, most prominently under the banner of
multivariate pattern analysis (MVPA) or “brain decoding”. Some uses of
machine learning in neuroscience directly address practical problems. For
example, machine learning methods can be used to decipher patterns in
neural data for clinical diagnosis and rehabilitation purposes including
brain-machine interfaces (Hatsopoulos and Donoghue, 2009). Such uses
are judged solely by their utility, and are otherwise unconstrained in the
data and methods they use. We mention these to put them aside. Our focus
will be on the application of decoding methods in the pursuit of basic
knowledge about brain function.

Machine learning methods have become popular in part because they
do not require many of the problematic auxiliary assumptions that plague
univariate analyses. Specifically, MVPA arguably does not require strong
commitments about the viability of reverse inference (Poldrack, 2006).
Nor does MVPA assume a simple relationship between brain activity and
the BOLD response (Logothetis et al., 2001), or the specifics of process
decomposition (Sternberg, 2011). Further, MVPA allows researchers to
deal with extremely large datasets utilising a wide range of techniques
including structural MRI, DTI, fMRI, EEG, and MEG. The combination of
large datasets and comparatively fewer assumptions gives machine
learning methods an air of objectivity: rather than relying on old as-
sumptions about cognitive architecture, we might simply let the brain tell
us which categories provide the best fit (Anderson, 2014).

Yet machine learning does not directly connect theory and data any
more than univariate analyses. The primary outcome from machine
learning analyses is not (we suggest) a direct test of theory but rather
evidence concerning stable patterns of brain activity — phenomena, in the
above parlance. Such patterns are typically characterised in terms of a
neural population's representational space: that is, how activity in the
population activity relates both to the world and to other neural repre-
sentations. The phenomena thus uncovered are what provide a basis for
our tests of theories about cognition and brain function.

Machine learning brings with it its own set of problems. Precisely
because it offers up simple patterns, it can be easy to read too much into
data — to see phenomena that are not really there. This article outlines
three of these metaphorical “ghosts” in machine learning techniques, as
applied in cognitive neuroscience. The first involves the source of MVPA
data itself, and the need to achieve greater specificity about the infor-
mation we are measuring in the brain. The second involves the move
from data to phenomenon, in particular when using dimensionality
reduction techniques to go from complex datasets to simple patterns. The
third and final challenge comes in moving from phenomenon to theory,
and the difference between measuring information in the brain and
inferring how the brain might actually use this information. Each of the
three ghosts place limits on the interpretability of decoding research in
cognitive neuroscience. Although there are no easy solutions, awareness
of these issues will provide a clearer path to understanding the nature of
representation and computation in the human brain.

Most will be familiar with some of these challenges, and some will be
familiar with all of them. Many researchers have expressed related con-
cerns about the interpretation of MVPA decoding results in cognitive
neuroscience, as well as offering similar recommendations that this issue
must be handled with care (e.g., Davis and Poldrack, 2014; de-Wit et al.,
2016; Dubois et al., 2015; Guest and Love, 2017; Haynes, 2015; Poldrack
and Farah, 2015; Ritchie et al., in press). One of our goals in this paper is
to show that these problems can be fit into a common framework that
connects them to ones faced previously by other, more well-established
scientific disciplines. This is not an exercise in pessimism, however. We
think that by clarifying the different steps of scientific inference and
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identifying the points at which problems often arise, we can arrive at
useful constraints on the design and interpretation of machine
learning studies.

Finally, in highlighting several field-specific challenges facing
decoding research, we do not mean to imply that other interpretive and
inferential issues associated with neuroimaging in general are somehow
irrelevant. Importantly, the inferences licensed by decoding methods —
like all neuroimaging methods — are limited by the fact that they are
inherently correlational (Poldrack, 2011). Consequently, demonstrating
significant decoding in a given brain region during task performance
cannot by itself establish that it plays a causal role in that performance.
Interventions, which include transcranial magnetic stimulation, revers-
ible inactivation, lesions, and optogenetics, provide essential causal in-
formation that complements the evidence supplied by decoding studies
(Pearl, 1995; Spirtes et al., 2000; Woodward, 2003). Related general
critiques of decoding research based on their reliance on reverse infer-
ence (e.g., Poldrack, 2006, 2008) may also be germane, but fall outside
the scope of this article to address. Importantly, we are squarely focused
on internal steps that decoding researchers can take to overcome the
field-specific interpretative and inferential challenges described above —
without depending on help from other methods.

2. The ghost of source ambiguity

In science, data is the foundation upon which we discover phenomena
and test theories. The same is true in cognitive neuroscience. But what
exactly is the nature of the data we rely on in decoding research?
Although there is consensus that machine learning methods measure
information in the brain, it is quite common for there to be uncertainty
about the underlying source of this information. The first ghost arises
from the gap between our ability to measure information and our ca-
pacity to determine the underlying neural source. The former enables us
to tell whether, and perhaps even how much, decodable information is
present about the stimulus or task condition in a brain representation. Yet
only the latter — identifying the neural source of this information — per-
mits the data to act as a foundation for interpretation and brings us closer
to the aim of understanding neural representations and processes.

Ascertaining the true neural source of decodable information, how-
ever, is extremely difficult because the mere presence of decodable in-
formation is ambiguous between potential sources (Bartels et al., 2008;
Naselaris and Kay, 2015; Op de Beeck, 2010). To illustrate this, consider
a hypothetical scenario from another branch of science. Suppose a simple
linear classifier such as Gaussian Naive Bayes (GNB) is successfully
trained to predict whether a hurricane will form based on data from a
large array of meteorological sensors. At this stage, we would have
learned that information about hurricanes is present in the multivariate
data collected from the sensors. Although this result would be useful for
all kinds of practical purposes, we would not have appreciably deepened
our understanding of hurricanes. At a minimum, if the classifier is to help
us understand hurricanes, we would have to determine what information
in the sensor data is driving the classification. To do this, one might
inspect the classifier weights. Perhaps one would then find that a com-
bination of dew point and humidity drove the classification. Only now
would we begin to understand the relationship between these meteoro-
logical variables and hurricanes, and thereby add to our knowledge of
hurricanes. Moreover, having identified these variables as important
factors for hurricanes puts us in the position to study how these factors
interact with other variables (e.g. wind speed, atmospheric pressure,
etc.), potentially deepening our knowledge of hurricanes still further. The
lesson here is that not all data is equal; even useful and predictive data
can fail to give us the sort of information we need for advancing
understanding.

2.1. Case study: source ambiguity in orientation decoding

The most rigorous investigation of the link between decodable
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