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ARTICLE INFO ABSTRACT

Keywords: Brain decoding relates behavior to brain activity through predictive models. These are also used to identify brain
fMRI regions involved in the cognitive operations related to the observed behavior. Training such multivariate models
Supervised learning is a high-dimensional statistical problem that calls for suitable priors. State of the art priors —eg small total-

DeCOfﬁng variation— enforce spatial structure on the maps to stabilize them and improve prediction. However, they come
&a‘z/;sglg with a hefty computational cost. We build upon very fast dimension reduction with spatial structure and model

ensembling to achieve decoders that are fast on large datasets and increase the stability of the predictions and the
maps. Our approach, fast regularized ensemble of models (FReM), includes an implicit spatial regularization by using
a voxel grouping with a fast clustering algorithm. In addition, it aggregates different estimators obtained across
splits of a cross-validation loop, each time keeping the best possible model. Experiments on a large number of
brain imaging datasets show that our combination of voxel clustering and model ensembling improves decoding
maps stability and reduces the variance of prediction accuracy. Importantly, our method requires less samples
than state-of-the-art methods to achieve a given level of prediction accuracy. Finally, FreM is much faster than

other spatially-regularized methods and, in addition, it can better exploit parallel computing resources.

Introduction: decoding needs stability

Decoding models predict stimuli or behavior from brain images. These
models have become a standard tool in neuroimaging data analysis
(Haynes and Rees, 2006; Norman et al., 2006; Varoquaux and Thirion,
2014). In clinical applications, they can be used to perform diagnosis or
prognosis (Fan et al., 2008; Demirci et al., 2008). They are also used as
evidence of the link between distributed activity patterns and an
observed behavior (Haxby et al., 2001). Additionally, decoding used on a
large variety of cognitive processes grounds a form of reverse inference
(Poldrack, 2011; Schwartz et al., 2013). An appeal of decoding proced-
ures is that they avoid multiple voxel-wise test and perform an omnibus
test: “Can one predict the behavioral outcome from brain activity?”

Identifying the brain activity patterns that drive prediction of
behavior is crucial for brain mapping and understanding (Mourao-
Miranda et al., 2005; Gramfort et al., 2013). However achieving reliable
and stable decoder maps is challenging due to the dimensionality of the
problem: the number of samples is small ~hundreds or less— whereas the
number of features is typically the number of voxels in the brain —up to
hundreds of thousands. Linear models, e.g. linear support vector
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machines (SVM), are often used (Pereira et al., 2009), as they have shown
a good performance in a small-sample regime. In addition, their classi-
fication/regression weights form brain maps used for interpretation of
the discriminative pattern (Mourao-Miranda et al., 2005).

However, the high dimensionality of the problem leads to multiple
weight maps yielding the same predictive power, and some form of
regularization has to be applied (Hastie et al., 2000). In across-subject
settings, complex spatial and sparse penalties such as total-variation
(TV) (Michel et al., 2011; Baldassarre et al., 2012) and Graph-net (Gro-
senick et al., 2013) help the decoder to capture the important brain re-
gions shared across subjects. TV and its variants are considered as the
state-of-the-art regularizers for brain images, as they handle local cor-
relations present in the data. The main drawback of spatially-structured
sparsity as in TV and related penalties is their computational cost.

A much cheaper alternative to these structured estimators is to use
spatially-constrained clustering algorithms to perform voxel grouping. In
decoding, voxel grouping is often used as part of the pipeline for stability
selection of correlated voxels (Varoquaux et al., 2012; Gramfort et al.,
2012; Wang et al., 2015). Additionally, it helps to improve the condi-
tioning of the estimation problem. However, voxel grouping introduces
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high bias, as the patterns are constrained by the clusters shape.

One way to mitigate this bias is to use model aggregation or
ensembling. These approaches have been used to reduce the variability
of the output of the decoder (Kuncheva and Rodriguez, 2010; Kuncheva
et al.,, 2010a; Zhou, 2012). The central idea is to build a decoder by
averaging the output of several “good” models. In particular, averaging
linear models boils down to averaging weight maps. One way to esti-
mate multiple models is to use bootstrap resampling to generate
different training sets to fit the decoder, and then aggregate them. This
approach is known as Bagging' (Breiman, 1996). It is easy to run in
parallel, training each model independently. Yet, naive application of
bagging to neuroimaging data induces high computational cost as the
data are high dimensional, and parameters have to be set by internal
cross-validation.

Decoding calls not only for hyperparameter selection, but also for
model validation. Both tasks require a measure of the predictive power
of the decoder. In practice, one runs two cross-validation loops —one
inside the other— where each loop assesses prediction accuracy
respectively for model selection and validation. Thus, investigators
often train the decoder many times. These repeated calculations entail
computational costs that limit day-to-day work on standard worksta-
tions. This is particularly problematic for more advanced decoders such
as those with spatial regularizations that are beneficial to neuroimaging
data (e.g. Mohr et al., 2015; Michel et al., 2011; Grosenick et al., 2013).
In the face of growing data size, to enable good validation and ease of
use on most hardware, a good decoder should be sparing on compu-
tation resources.

Contributions. Here, we propose a fast scheme to train regularized
ensembles of models, FReM. It reduces the variance of the weight maps of
the decoder, while ensuring high prediction accuracy. The core of this
approach is to average the estimator with the best predictive power per
loop inside the nested cross-validation. To benefit from spatial regulari-
zation while keeping fast run times, we show how an optional voxel-
clustering can be included in the ensembling, bringing stable spatial
patterns. We perform a series of classification experiments on several
MRI datasets to demonstrate that ensembling regularized models gives
state-of-the-art decoders. In particular, we show that they compare
favorably to existing decoders in terms of prediction performance,
weight-map stability, and computation time.

Background and prior art
Brain decoding

In neuroimaging, a decoder is a predictive model that, given n brain
images, fits an external variable y. In practice, we arrange n observed
brain images composed of p voxels in a matrix Xe R™P. Linear predictive
models, at the core of most decoders in neuroimaging, are then written
(Hastie et al., 2009):

y =f(Xw +¢), €))

where y denotes a target variable giving the experimental condition or
health status of subjects, f represents the decision function in the classi-
fication; we RP denotes the weight vector/map, and ec R" is a random
error term.

In spite of a recently growing effort on the accumulation of neuro-
imaging data (Poldrack and Gorgolewski, 2015), the number n of samples
per-class remains in the order of a few hundreds, whereas p can be
hundreds of thousands of voxels (p>n). In this high-dimensional setting,
there are many equivalent solutions and some form of regularization or
prior is necessary to restrict model complexity. A standard approach re-
lies on solving the following optimization problem:

! Bagging stands for Bootstrap aggregating.
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w(2) = argmin{ L (y,X; W) + 1Q2(w)}, 1>0, (@)
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where 7 is a data-fidelity term, a loss function that measures the quality
of the estimator (e.g. logistic or hinge loss); £2 denotes the penalty/reg-
ularization term, and 1 is the parameter that controls the amount of
regularization. Two of the most often used penalties are: 1) the #>-norm,
that penalizes large w coefficients, and yields non-sparse solutions; 2) the
#1-norm, that promotes a small number of non-zero w coefficients, and
yields sparse solutions (Tibshirani, 1994).

Nevertheless, as neuroimaging data exhibit strong correlations be-
tween the columns of X, the #;-penalty yields unstable solutions as it
tends to arbitrarily select only one among the correlated variables (Yu,
2013; Varoquaux et al., 2012). One way to tackle this is the use of
additional spatially-informed penalties as Graph-net (Grosenick et al.,
2013) or TV (total variation) (Michel et al., 2011; Eickenberg
et al., 2015).

Model validation and selection

In high-dimensional settings, the number of candidate models is
much larger than the number of samples. Therefore, we use regulariza-
tion to constrain the complexity of the solution, and this penalization is
controlled by the A regularization parameter. The ensuing problem is
then to find an optimal value for A (i.e. finding the best bias-variance
trade-off), yielding a model that exploits the richness of the data. One
typically uses the predictive power of the decoder to choose the right
amount of regularization.

Hyperparameters selection. In general, the setting of the hyper-
parameter is a data-specific choice, as it is governed by the amount of
data and their signal-to-noise-ratio (SNR). The most common approach to
set it is to use cross-validation to measure the predictive power for
various amounts of regularization and retain the value that maximizes
the predictive power across several cross-validation folds (Varoquaux
etal., 2017). To assess predictive power in addition, the standard scheme
is nested cross-validation, that consists of two cross-validation loops run
one inside the other: an outer loop is used to assess the predictive power
of the decoder, and an inner/nested loop is used to set the hyper-
parameter(s) (see Fig. 1): the train set is used to fit the decoder, while the
test and validation sets are used to measure its ability to generalize to
new data.

In most of the non-parametric approaches to select a regularization
parameter, a suitable and finite set of [ hyperparameters, 1 € [41, ..., 4] is
first defined. For each cross-validation fold, one fits the decoder with all
hyperparameters, and measures their prediction error on the test set.
Then, one choses the J; value that maximizes the predictive power
across folds.
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Fig. 1. Illustration of nested cross-validation: Two cross-validation loops are run one
inside the other. The inner loop is used to set the hyperparameters, whereas the outer loop
is used to assess the predictive power of the decoder.
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