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A B S T R A C T

We introduce a probabilistic (Bayesian) framework and associated software toolbox for mapping population
receptive fields (pRFs) based on fMRI data. This generic approach is intended to work with stimuli of any
dimension and is demonstrated and validated in the context of 2D retinotopic mapping. The framework enables
the experimenter to specify generative (encoding) models of fMRI timeseries, in which experimental stimuli enter
a pRF model of neural activity, which in turns drives a nonlinear model of neurovascular coupling and Blood
Oxygenation Level Dependent (BOLD) response. The neuronal and haemodynamic parameters are estimated
together on a voxel-by-voxel or region-of-interest basis using a Bayesian estimation algorithm (variational Lap-
lace). This offers several novel contributions to receptive field modelling. The variance/covariance of parameters
are estimated, enabling receptive fields to be plotted while properly representing uncertainty about pRF size and
location. Variability in the haemodynamic response across the brain is accounted for. Furthermore, the framework
introduces formal hypothesis testing to pRF analysis, enabling competing models to be evaluated based on their
log model evidence (approximated by the variational free energy), which represents the optimal tradeoff between
accuracy and complexity. Using simulations and empirical data, we found that parameters typically used to
represent pRF size and neuronal scaling are strongly correlated, which is taken into account by the Bayesian
methods we describe when making inferences. We used the framework to compare the evidence for six variants of
pRF model using 7 T functional MRI data and we found a circular Difference of Gaussians (DoG) model to be the
best explanation for our data overall. We hope this framework will prove useful for mapping stimulus spaces with
any number of dimensions onto the anatomy of the brain.

1. Introduction

There are many examples of neuronal populations which represent
stimulus spaces. In the auditory cortex, the 1-dimensional space of sound
frequencies is mapped onto the surface of the brain (Merzenich and
Brugge, 1973; Moerel et al., 2012). In the visual system, retinotopic
mapping has revealed that the 2-dimensional plane of the retina is
mapped multiple times onto the surface of visual cortex (e.g. Holmes,
1945). Place cells in the bat hippocampus respondmaximally to a specific
location in 3-dimensional space (Palacci et al., 2013) and conceptual
knowledgemay be represented neuronally in spaces of two dimensions or
more (Constantinescu et al., 2016). Populations of neurons can be
characterised by their receptive fields – the area(s) of N-dimensional
space to which they maximally respond. In this paper, we introduce a

generic framework for mapping stimulus spaces onto the brain and for
performing hypothesis testing. We illustrate this approach in the context
of visual population receptive field (pRF) mapping.

To enable pRF mapping, model parameters are required which cap-
ture the response of neuronal populations to experimental stimuli. The
spatial distribution of these parameters across the brain can reveal large-
scale topographic features, such as the presence of retinotopic maps. pRF
mapping depends upon building generative models of imaging timeseries
- we seek to understand how stimuli cause a change in spatially extended
patterns of neuronal activity, which in turns cause the timeseries we
measure using medical imaging devices. For functional MRI (fMRI), this
involves modelling neuro-vascular coupling and the BOLD response
(Kumar and Penny, 2014), which is an inherently nonlinear mapping. For
instance, the BOLD response has a refractory period which depends on
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the interstimulus interval (Friston et al., 1998). Furthermore, brain re-
gions differ in the extent of their vascularization, giving rise to regional
differences in BOLD response. Typically, pRF mapping experiments use a
canonical haemodynamic response function, which may be determined
on a per-subject basis. Here, to obtain the best possible estimators of
neural activity for constructing pRF maps, we specified and estimated a
non-linear model for each voxel's fMRI timeseries which included a
biologically motivated differential equation model of neurovascular
coupling and the BOLD response (Buxton et al., 2004; Stephan
et al., 2007).

The objective of modelling (and of science more generally) is to test
hypotheses. In the context of pRF mapping, hypotheses may be specified
explicitly or implicitly. For instance, He et al. (2015) tested the explicit
hypothesis that pRF position is modulated by perceived 3D space. Other
pRF studies have been exploratory, for instance examining the reorgan-
isation of visual field maps after lesions or disease (e.g. Levin et al.,
2010). In studies such as this, there is an implicit hypothesis that pRF
parameters will deviate from their normal range in specific areas of
cortex. Despite the popularity of pRF mapping, a framework for formal
hypothesis testing is currently lacking.

Here we introduce a set of tools for probabilistic (Bayesian) model
fitting and inference in the context of pRF mapping, which could offer
several benefits to experimenters. The optimal method for testing hy-
potheses is to compare the likelihood of the data under one model (or
hypothesis) against the likelihood of the data under another model
(Neyman and Pearson, 1933). For instance, an experimenter may wish to
test whether certain brain regions have receptive fields with an excit-
atory centre and inhibitory surround, as identified by Hubel and Wiesel
(1959) with single unit recordings. Such receptive fields may be
modelled using a Difference of Gaussians (DoG) function (Rodieck,
1965), which can also capture the neuronal response at the level of voxels
in fMRI data (Zuiderbaan et al., 2012). Alternatively, if the evidence for
an inhibitory surround is lacking, a simple excitatory receptive field may
be the better model (as applied to fMRI data by Dumoulin and Wandell,
2008). This kind of question, regarding which of several models is the
best explanation of the available imaging data, may be addressed by
comparing the evidence for the fMRI data under competing models at
each point in the brain.

Models, including pRF models, cannot simply be compared based on
the percentage variance they explain (their accuracy). Such a comparison
ignores complexity – any model with more (independent) parameters
will explain more of the variance, with the added risk of overfitting the
noise and failing to generalise. One solution is to use cross-validation
across datasets (e.g. Zuiderbaan et al., 2012) to approximate the model
evidence, which offers control for over-fitting (i.e. assesses general-
isability). However, this does not facilitate model comparison within a
single dataset. In the framework proposed here, an approximation of the
log model evidence is used known as the negative variational free energy
(Friston et al., 2007; Penny, 2012). This quantity, estimated for each pRF
model, is the accuracy of the model minus its complexity. By comparing
models based on their free energy, the experimenter can select the
simplest model that explains the most variance. Furthermore, by taking
into account the covariance between parameters, the free energy is a
more sensitive approximation to the log model evidence than other ap-
proximations such as the AIC or BIC.

As well as enabling competing models to be compared, the framework
we propose has advantages for parameter-level inference, which may be
of particular relevance for exploratory pRF studies. Here, parameters
such as the pRF's size are each represented as a (normal) probability
distribution, with both an expected value and variance/covariance (un-
certainty). Thus, the uncertainty of parameter estimates may be
expressed when visualising the pRF and when making comparisons
within and between subjects. Uncertainty about the parameter estimates
may arise frommultiple sources – observation noise, subjects' movement,
as well as any covariance among parameters. Also, it may not always be

possible to confidently assign variance in the measured signal to either
neuronal or haemodynamic causes. By estimating the full covariance
among neuronal and haemodynamic parameters, we ensure that any
uncertainty induced by ambiguity between these parameters is accoun-
ted for when visualising the pRF or testing hypotheses.

Here, we generalise an approach previously introduced in the context
of tonotopic mapping (Kumar and Penny, 2014), making several novel
contributions. We extend the method to stimuli of any dimension, and
demonstrate its application in the context of visual (retinotopic) pRF
mapping (Section 3.1, 3.2). We evaluate the face validity and robustness
to noise of the method using simulated data (Section 3.3), and evaluate
test-retest reliability across scanning runs using empirical data (Section
3.4). Finally, we demonstrate the use of this method for hypothesis
testing (Section 3.5), by comparing the evidence for two established
forms of pRF model: a Gaussian response function (Dumoulin and
Wandell, 2008) and a Difference of Gaussians (centre-surround) response
function (Zuiderbaan et al., 2012). Within each category of model we
also compared the evidence for circular, elliptical and angled (rotated)
receptive fields. We do not suggest drawing any firm conclusions about
these models from the results we present here, which only uses data from
a single subject. Instead, our aim is to demonstrate the statistical appa-
ratus for comparing models, which we hope will prove useful for larger
empirical studies. All of the methods described and evaluated here are
made available to experimenters via a freely available software toolbox
(Appendix A).

2. Material and methods

2.1. Participants

Empirical data were acquired as part of a previously reported study
(Silson et al., 2015). Data from one participant is included here. All
participants in the previous study had normal or corrected-to-normal
vision and gave written informed consent. The National Institutes of
Health Institutional Review Board approved the consent and protocol
(93-M-0170, NCT00001360).

2.2. Data acquisition

Data were acquired using a Siemens 7 T Magnetom scanner in the
Clinical Research Centre on the National Institutes of Health campus
(Bethesda, MD). Partial EPI volumes of the occipital and temporal
cortices were acquired using a 32-channel head coil (42 slices;
1.2 � 1.2 � 1.2 mm; 10% interslice gap; TR, 2 s; TE, 27 ms; matrix size,
170 � 170; FOV, 192 mm). Anatomical T1 weighted volumes were ac-
quired before the experimental runs. Standard MPRAGE (Magnetization-
Prepared Rapid-Acquisition Gradient Echo) and corresponding GE-PD
(Gradient Echo–Proton Density) images were collected and the
MPRAGE images were then normalized by the GE-PD images, for use as
high-resolution anatomical data for the fMRI data analysis.

2.3. Task and procedure

Naturalistic scene images were presented through a bar aperture that
gradually traversed the visual field (Fig. 1). During each 36 s sweep, the
aperture took 18 evenly spaced steps (each 2s or 1TR) to traverse the
entire screen (Dumoulin and Wandell, 2008). Eight of these sweeps
formed one run, in the following order: L-R, BR-TL, T-B, BL-TR, R-L,
TL-BR, B-T, and TR-BL. There were 16 identical runs per participant. The
scene stimuli, which covered a circular area (21� diameter) changed
every 400 ms (5 per aperture position). During runs, participants per-
formed a colour-detection task at fixation, indicating via button press
when the white fixation dot changed to red. Colour fixation changes
occurred semi-randomly, with ~2 colour changes per sweep.

P. Zeidman et al. NeuroImage xxx (2017) 1–15

2



Download English Version:

https://daneshyari.com/en/article/8957350

Download Persian Version:

https://daneshyari.com/article/8957350

Daneshyari.com

https://daneshyari.com/en/article/8957350
https://daneshyari.com/article/8957350
https://daneshyari.com

