ARTICLE IN PRESS

J Infect Chemother xxx (2018) 1-9

Contents lists available at ScienceDirect

Journal of Infection and Chemotherapy

journal homepage: http://www.elsevier.com/locate/jic

Review Article

Pathophysiology of severe fever with thrombocytopenia syndrome and development of specific antiviral therapy

Masayuki Saijo

Department of Virology 1, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku, Tokyo, 162-8640, Japan

ARTICLE INFO

Article history: Received 23 March 2018 Received in revised form 22 June 2018 Accepted 12 July 2018 Available online xxx

Keywords:
Severe fever with thrombocytopenia syndrome
SFTS
Favipiravir
Ribavirin
Viral hemorrhagic fever
Pathophysiology

ABSTRACT

Severe fever with thrombocytopenia syndrome (SFTS) caused by SFTS virus (SFTSV), a novel phlebovirus, was reported to be endemic to central and northeastern PR China and was also to be endemic to South Korea and western Japan. SFTS is an emerging viral infection, which should be categorized as a viral hemorrhagic fever disease as Crimean-Congo hemorrhagic fever (CCHF) is caused by CCHF virus. SFTS is a tick-borne viral infection. SFTSV is maintained between several species of ticks and wild and domestic animals in nature. Patients with SFTS show symptoms of fever, general fatigue, and gastrointestinal symptoms such as bloody diarrhea. The severely ill SFTS patients usually show gastrointestinal hemorrhage and deteriorated consciousness. The case fatality rate of SFTS ranges from 5 to 40%. Pathological studies on SFTS have revealed that the mechanisms behind the high case fatality rate are virus infectionrelated hemophagocytic syndrome associated with cytokine storm, coagulopathy due to disseminated intravascular coagulation causing bleeding tendency, and multi-organ failure. Favipiravir was reported to show efficacy in the prevention and treatment of SFTSV infections in an animal model. A clinical study to evaluate the efficacy of favipiravir in the treatment of SFTS patients has been initiated in Japan. SFTSV is circulating in nature in PR China, Korea, and Japan, indicating that we cannot escape from the risk being infected with SFTSV. The development of specific therapy and preventive measures is a pressing issue requiring resolution to reduce the morbidity and mortality of SFTS patients.

© 2018 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases.

Published by Elsevier Ltd. All rights reserved.

Contents

1.	Introd	luction	. 00
2.	Chara	cteristics and life cycle of SFTSV and route of SFTSV infection to humans	. 00
		Characteristics of SFTSV	
	2.2.	Tick species involved in SFTSV transmission to humans	00
	2.3.	Human-to-human infections	00
3.	Clinic	al characteristics of SFTS	. 00
	3.1.	Clinical manifestations	00
	3.2.	Association between viremia level and prognosis	00
	3.3.	Pathophysiology	00
	3.4.	Mechanism of CNS-associated symptoms appearing in SFTS patients	00
	3.5.	Pathophysiologies leading to a poor prognosis	00
4.		al model and evaluation of the efficacy of antiviral agents favipiravir and ribavirin in treating SFTSV infections	
	4.1.	General issues	00
	4.2.	In vitro antiviral activity of favipiravir against SFTSV	
	4.3.	In vivo efficacy of favipiravir against SFTSV infection in IFNAR-KO mice	
		Favipiravir therapeutic study	
5.	Specif	fic and promising antiviral drug therapy for SFTS	. 00

E-mail address: msaijo@nih.go.jp.

https://doi.org/10.1016/j.jiac.2018.07.009

 $1341-321X/ \\ \odot 2018 \ Japanese \ Society \ of \ Chemotherapy \ and \ The \ Japanese \ Association \ for \ Infectious \ Diseases. \ Published \ by \ Elsevier \ Ltd. \ All \ rights \ reserved.$

Please cite this article in press as: Saijo MPathophysiology of severe fever with thrombocytopenia syndrome and development of specific antiviral therapy, J Infect Chemother (2018), https://doi.org/10.1016/j.jiac.2018.07.009

6.	Supportive therapies for SFTS patients	. 00
	6.1. Steroid pulse therapy	00
	6.2. Plasma exchange	00
7.	SFTS and CCHF	. 00
8.	Summary	. 00
	Funding	. 00
	Acknowledgements	00
	References	

Abbrevia	tions	IL	interleukin
		IP	interferon-γ-induced protein
ALT	alanine aminotransferase	КО	knockout
AST	aspartate aminotransferase	LDH	lactate dehydrogenase
CCHF	Crimean-Congo hemorrhagic fever	MIP	macrophage inflammatory protein
CCHFV	CCHF virus	NP	nucleocapsid protein
CNS	central nervous system	PE	Plasma exchange
DPRK	Democratic Peoples' Republic of Korea	PR China	the People's Republic of China
HLH	hemophagocytic lymphohistiocytosis	sCD40L	soluble CD40 ligand
IFN	interferon	SFTS	severe fever with thrombocytopenia syndrome
IFNAR	interferon alpha receptor	SFTSV	SFTS virus
IFNAR-KO mice IFNAR-KO C57BL/6 mice		sIL-2RA	soluble IL-2 receptor alpha
IHC	immunohistochemistry	TCID ₅₀	50% tissue culture infective dose

1. Introduction

Severe fever with thrombocytopenia syndrome (SFTS) was discovered as an emerging infectious disease epidemic to the People's Republic of China (PR China) [1,2], South Korea [3], and Japan [4,5]. SFTS is endemic to East Asia, PR China, South Korea possibly including the Democratic Peoples' Republic of Korea (DPRK), and Japan (Fig. 1). The causative agent of SFTS is a novel

phlebovirus of the family *Bunyaviridae*. It has been officially named SFTS virus (SFTSV) in the genus *Phlebovirus* of the family *Phenuiviridae* in the 10th Report released in 2016 from the International Committee on Taxonomy of Viruses (https://talk.ictvonline.org/ictv-reports/ictv_online_report/).

Crimean-Congo hemorrhagic fever (CCHF) is also a tick-borne viral infection caused by CCHF virus (CCHFV, genus *Nairovirus*, family *Phenuiviridae*). CCHF is endemic to Africa, Europe, the

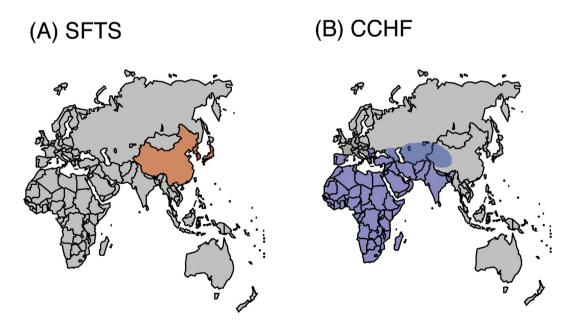


Fig. 1. SFTS- and CCHF-endemic regions. SFTS is endemic to East Asia whereas CCHF is endemic to Africa, Europe, the Middle East, and Central and South Asia, including the Xinjiang Uyghur Autonomous Region of PR China.

Please cite this article in press as: Saijo MPathophysiology of severe fever with thrombocytopenia syndrome and development of specific antiviral therapy, J Infect Chemother (2018), https://doi.org/10.1016/j.jiac.2018.07.009

Download English Version:

https://daneshyari.com/en/article/8957925

Download Persian Version:

https://daneshyari.com/article/8957925

<u>Daneshyari.com</u>