REVIEW ARTICLE

Liquid Biopsy for Advanced Non-Small Cell Lung Cancer (NSCLC): A Statement Paper from the IASLC

Christian Rolfo, MD, PhD, MBA,^a Philip C. Mack, PhD,^b Giorgio V. Scagliotti, MD, PhD,^c Paul Baas, MD, PhD,^d Fabrice Barlesi, MD, PhD,^e Trever G. Bivona, MD, PhD,^f Roy S. Herbst, MD, PhD,^g Tony S. Mok, MD,^h Nir Peled, MD, PhD,ⁱ Robert Pirker, MD,^j Luis E. Raez, MD,^k Martin Reck, MD, PhD,^l Jonathan W. Riess, MD,^b Lecia V. Sequist, MD, MPH,^m Frances A. Shepherd, MD,ⁿ Lynette M. Sholl, MD,^o Daniel S. W. Tan, MBBS, PhD,^P Heather A. Wakelee, MD,^q Ignacio I. Wistuba, MD,^r Murry W. Wynes, PhD,^S David P. Carbone, MD, PhD,^t Fred R. Hirsch, MD, PhD,^{u,*} David R. Gandara, MD^b

^aMarlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland

^bUniversity of California Davis Comprehensive Cancer Center, Sacramento, California

^cUniversity of Turin, Department of Oncology at San Luigi Hospital, Orbassano, Italy

^dDepartment of Thoracic Oncology, The Netherlands Cancer Institute and Department of Pulmonary Disease, Academic Medical Center, Amsterdam, The Netherlands

^eMultidisciplinary Oncology and Therapeutic Innovations Department, Assistance Publique Hôpitaux de Marseille, Aix Marseille University, Marseille, France

^fDepartment of Medicine, Division of Hematology/Oncology, University of California San Francisco, San Francisco, California

³Yale Cancer Center, New Haven, Connecticut

*Corresponding author.

Drs. Rolfo and Mack contributed equally to this paper.

Disclosure: Dr. Rolfo has received nonfinancial research support from OncoDNA and other support from Guardant Health. Dr. Mack has received personal fees from Guardant Health and Astra Zeneca. Dr. Scagliotti has received personal fees from Lilly, Roche, Pfizer, Astra Zeneca, Clovis, and Merck Sharp & Dohme. Dr. Barlesi has received personal fees from Astra Zeneca, Bristol-Myers Squibb, Boehringer Ingelheim, Eli Lilly Oncology, F. Hoffmann-La Roche Ltd., Novartis, Merck, Merck Sharp & Dohme, Pierre Fabre, Pfizer, and Takeda. Dr. Mok has received a grant from XCovery; has received grants and personal fees from Astra Zeneca, Roche/Genentech, Bristol-Myers Squibb, Boehringer Ingelheim, Novartis, Merck Sharp & Dohme, Pfizer, Clovis Oncology, SFJ Pharmaceuticals, Taiho, Eisai, and Takeda; personal fees from Eli Lilly, Merck Serono, Vertex, ACEA Biosciences, Oncogenex, Celgene, Ignyta Inc., Fishawack Facilitate Ltd., Janssen, and ChiMed; and has a nonfinancial relationship with geneDecode. Dr. Peled has received grants and personal fees from Astra Zeneca, Boehringer Ingelheim, Bristol-Myers Squibb, Eli Lilly, Merck Sharp & Dohme, Novartis, Pfizer, Roche, NovellusDx, FMI, and Gaurdant360. Dr. Pirker has received personal fees from Astra Zeneca, Boehringer Ingelheim, Merck Sharp & Dohme, and Genmab Roche. Dr Raez has received grants from NantOmics, Exosomes DX, Liquid Genomics, and Biocept. Dr. Reck has received personal fees from Hoffmann-La Roche, Lilly, Bristol-Myers Squibb, Merck Sharp & Dohme, Merck, Astra Zeneca, Boehringer Ingelheim, Celgene, and Pfizer. Dr. Riess has received personal fees from Takeda, Celgene, Clovis, AbbVie, and Medtronic; and has received grants from Merck, Astra Zeneca, Novartis, and Millenium. Dr. Sequist has received personal fees from Bristol-Myers Squibb, Astra Zeneca, Pfizer, and Genentech; and has been an unpaid consultant for Boehringer Ingelheim, Merrimack, Novartis, and Clovis Oncology. Dr. Sholl has received personal fees from GfK and Genentech. Dr. Tan has received grants from Novartis, Bayer, Astra Zeneca, and GlaxoSmithKline; has received personal fees from Novartis,

Boehringer Ingelheim, Merck, Astra Zeneca, Bristol-Myers Squibb, and Roche; and has advisory roles with Novartis, Bayer, and Boehringer Ingelheim. Dr. Wistuba has received grants from Genentech/Roche, Bristol-Myers Squibb, HTG Molecular, Merck, Asuragen, Pfizer, Astra Zeneca/Medimmune, Oncoplex, Amgen, Takeda, EMD Serono, Medimmune, Adaptive, DepArray, and Karus; and has received personal fees from Genentech/Roche, Bristol-Myers Squibb, Boehringer Ingelheim, Medscape, HTG Molecular, Merck, Asuragen, Pfizer, and Astra Zeneca/Medimmune. Dr. Carbone has received personal fees from Abbvie, Adaptimmune, Agenus, Amgen, Ariad, Astra Zeneca, Biocept, Boehringer Ingelheim, Celgene, EMD Serono, Inc., Foundation Medicine, Genentech/Roche, Gritstone, Guardant Health, Inovio, Merck, Merck Sharp & Dohme, Novartis, Palobiofarma, Pfizer, prIME Oncology, Stemcentrx, and Takeda; and has received grants from Bristol-Myers Squibb. Dr. Hirsch is co-inventor of a University of Colorado-owned patent: "EGFR IHC and-FISH as predictive biomarkers for EGFR Therapy"; and is on advisory boards for Abbvie, Astra Zeneca, Biocept, Bristol-Myers Squibb, HTG, Lilly, Merck, Novartis, Pfizer, Roche/Genentech, and Ventana. Dr. Wistuba has received grants and personal fees from Genentech/Roche, Bristol-Myers Squibb, Genentech/Roche, HTG Molecular, Lilly, Merck, Pfizer, and Ventana; and has received laboratory research grants (through the University of Colorado) from Genentech, Bristol-Myers Squibb, Lilly, Bayer, and Clovis Oncology. Dr. Gandara has received personal fees from Foundation Medicine and Guardant Health. The remaining authors declare no conflict of interest.

Address for correspondence: Fred R. Hirsch, MD, PhD, University of Colorado Cancer Center, MS8117, 12801 E. 17th Ave., Building L-18, Room 8119, Aurora, Colorado 80045. E-mail: Fred.Hirsch@ucdenver. edu

 \circledcirc 2018 Published by Elsevier Inc. on behalf of International Association for the Study of Lung Cancer.

ISSN: 1556-0864

https://doi.org/10.1016/j.jtho.2018.05.030

2 Rolfo et al

^hState Key Laboratory of South China, Hong Kong Cancer Institute, The Chinese University of Hong Kong, Hong Kong, China ⁱInstitute of Oncology, Soroka Medical Center and Ben Gurion University, Beer Sheva, Israel ^jDepartment of Medicine I, Medical University of Vienna, Vienna, Austria

^kMemorial Cancer Institute, Memorial Healthcare System/Florida International University (FIU) Miami, Florida ^lDepartment of Thoracic Oncology, Lung Clinic Grosshansdorf, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Grosshansdorf, Germany

^mMassachusetts General Hospital Cancer Center and Harvard Medical School, Boston, Massachusetts

ⁿUniversity Health Network and Princess Margaret Cancer Centre, Toronto, Ontario, Canada

^oBrigham and Women's Hospital and Department of Pathology, Harvard Medical School, Boston, Massachusetts ^PNational Cancer Centre Singapore and Genome Institute of Singapore, Singapore

^aDepartment of Medicine, Division of Oncology, Stanford University School of Medicine, Stanford, California

^rDepartment of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas ^sInternational Association for the Study of Lung Cancer, Aurora, Colorado

^tDivision of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio

^uDivision of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora,

Colorado, and the International Association for the Study of Lung Cancer, Aurora, Colorado

Received 2 February 2018; revised 16 May 2018; accepted 26 May 2018 Available online - 6 June 2018

ABSTRACT

The isolation and analysis of circulating cell-free tumor DNA in plasma is a powerful tool with considerable potential to improve clinical outcomes across multiple cancer types, including NSCLC. Assays of this nature that use blood as opposed to tumor samples are frequently referred to as liquid biopsies. An increasing number of innovative platforms have been recently developed that improve not only the fidelity of the molecular analysis but also the number of tests performed on a single specimen. Circulating tumor DNA assays for detection of both EGFR sensitizing and resistance mutations have already entered clinical practice and many other molecular tests - such as detection of resistance mutations for Anaplastic Lymphoma Kinase (ALK) receptor tyrosine kinase rearrangements — are likely to do so in the near future. Due to an abundance of new evidence, an appraisal was warranted to review strengths and weaknesses, to describe what is already in clinical practice and what has yet to be implemented, and to highlight areas in need of further investigation. A multidisciplinary panel of experts in the field of thoracic oncology with interest and expertise in liquid biopsy and molecular pathology was convened by the International Association for the Study of Lung Cancer to evaluate current available evidence with the aim of producing a set of recommendations for the use of liquid biopsy for molecular analysis in guiding the clinical management of advanced NSCLC patients as well as identifying unmet needs. In summary, the panel concluded that liquid biopsy approaches have significant potential to improve patient care, and immediate implementation in the clinic is justified in a number of therapeutic settings relevant to NSCLC.

© 2018 Published by Elsevier Inc. on behalf of International Association for the Study of Lung Cancer.

Keywords: Liquid biopsy; NSCLC; cfDNA; ctDNA; Biomarkers; Resistance; Molecular analysis; Targeted therapies

Introduction

One of the hallmarks of NSCLC is represented by the expanding array of effective targeted therapies with activity in specific molecular subsets of this disease. Because acquired resistance to targeted inhibitors is nearly universal, development of next-generation agents able to overcome common resistance mechanisms has been a vital key of experimental and therapeutic research. As a primary example, the approval of firstgeneration EGFR tyrosine kinase inhibitors (EGFR TKIs) in 2009 was rapidly followed by the development of second- and third-generation TKIs, with a fourthgeneration inhibitor currently being studied.¹⁻⁷ In particular, third-generation inhibitors, such osimertinib, were designed to selectively target specific mutant forms of EGFR. This new class of agents provide several advantages: high potency against common *EGFR* activating mutations, the ability to inhibit the EGFR protein harboring the T790M mutation that confers resistance to first- and second-generation EGFR TKIs, and its relatively lower affinity for wild-type (WT) EGFR, which substantially reduces class toxicities. Similarly, an expanding repertoire of agents that target anaplastic lymphoma kinase (ALK) fusion kinase provides significant therapeutic options for patients with acquired resistance to the firstgeneration ALK TKI crizotinib.⁸ Approximately one-third of patients acquire resistance to crizotinib through emergence of any one of the growing list of *ALK*-specific point mutations that interfere with drug binding. Nextgeneration ALK TKIs such as alectinib, ceritinib, brigatinib, ensartinib, and lorlatinib are capable of binding to and inhibiting mutant forms of ALK. However, these drugs have different binding affinities in the context of different resistance mutations and optimal patient treatment may benefit from identification of the specific resistance mutation to deliver to the patients the most appropriate agent to restore activity.⁸

Download English Version:

https://daneshyari.com/en/article/8958399

Download Persian Version:

https://daneshyari.com/article/8958399

Daneshyari.com