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A B S T R A C T

Existing agricultural detection algorithms mainly detect a single object category (class) under specific conditions
which restricts the farmer's ability to utilize them in different conditions and for different classes. What is needed
are generic algorithms that can learn to detect objects from examples, thereby reducing the technical burden
required to adapt to local circumstances. Among generic algorithms, deep learning methods recently are be-
ginning to outperform other generic algorithms. In this study, we investigate the possibility of using a deep
learning algorithm for recognition of two classes (mature and immature strawberry) of agricultural product
using a deep convolutional neural network (DCNN) and greenhouse images taken under natural lighting con-
ditions. To the best of our knowledge, this is the first application of deep learning to the detection of mature and
immature strawberries as two classes. We evaluated the results using the following parameters: average preci-
sion (AP), a parameter that combines detection success and confidence of detection; and bounding box overlap
(BBOL) which measures localization accuracy. The developed deep learning model achieved an AP of 88.03%
and 77.21%, and a BBOL of 0.7394 and 0.7045 respectively for mature and immature classes.

1. Introduction

Autonomous robots, of which more and more are appearing in
agricultural settings, are smart machines that can carry out tasks
without intensive human intervention (Bekey, 2005), such as naviga-
tion, recognition, etc. A crucial step for automation in the agricultural
environment will be successful detection (identification and localiza-
tion) of objects; a function carried out by object detection algorithms.
To date most object detection algorithms though are task specific and
developed under highly constrained artificial environments. This means
that they are limited to identifying only one object class at a time under
very specific conditions. Algorithms which can be readily expanded to
detect other object categories in a complex, real world situation would
provide much greater flexibility (Csurka et al., 2004). Thus, increasing
the farmer's capacity to flexibly use these autonomous robots in dif-
ferent situations, for example: different field conditions or crop types.

For example, recognition algorithms in harvesting robots to detect
strawberries (Hayashi et al., 2010), apples (Ji et al., 2012), corn tussles
(Kurtulmuş, and Kavdir, 2014), and immature peach (Kurtulmus et al.,
2013) have been recently developed. These algorithms are, however,
specifically designed for a particular object using specific features of

that object, such as color, roundness, or size. Although color informa-
tion can provide faster running speed, it doesn't increase the accuracy of
detection in mature strawberry (Xu et al., 2013).

Examples using this color information include: color segmentation
and textural features for mango fruit identification (Payne et al., 2013);
local texture features such as contrast entropy and a scale invariant key
point (SIFT) to detect the texture of green citrus (Sengupta and Lee,
2014); color features and radial symmetry transform (Kurtulmus et al.,
2013) to identify Region Of Interest (ROI); and color based features to
detect mature strawberries for a strawberry harvesting robot (Rajendra
et al., 2011). Such algorithms though are difficult to quickly adapt to
new object classes, such as flowers, calyxes, or humans, and are also
very sensitive to illumination conditions, so specific illumination con-
ditions become a necessity.

This kind of specificity constraints the robot's performance by re-
stricting its ability to understand the environment, thus preventing
agricultural robots from achieving a higher degree of autonomy.
Another disadvantage of having a task specific algorithm in an agri-
cultural robot is that it will not be allow the robots capacities to be fully
utilized. An example would be the hardware of a harvesting robot,
which can harvest fruit, could be used to also thin out immature fruit,
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but if the identification algorithm can only detect mature fruit such
capacity cannot be accessed. Such disadvantages suggest agricultural
detection algorithms should be more biased towards generic detection
algorithms which can be readily adapted to identify multiple classes
using only some examples of that class taken under natural light con-
ditions.

Generic algorithms can be divided into two classes: deep and
shallow learning. Shallow algorithms are those with an architecture two
to three layers deep, while deep algorithms are those that contain more
than three layers of nonlinear operations (Bengio, 2009). Examples of
shallow learning models include: a Support Vector Machine (SVM) used
for fruit identification and classification (Song et al., 2014); a SVM
classifier inside their algorithm to identify and count green citrus fruits
in ambient light conditions (Sengupta and Lee, 2014); and a neural
network with two hidden layers, SVM and other statistical classifiers to
identify immature peach fruit (Kurtulmus et al., 2013).

A major disadvantage, however, with such shallow algorithms is
that they need a large amount of data (Less Generalization) to obtain an
accurate classification (Bengio, 2009). On the other hand, deep learning
methods do not potentially suffer from this disadvantage. In the field of
image recognition, deep learning methods have been shown to display
significant performance improvements over shallow learning classifiers
(Chatfield et al., 2014). This is in part because deep learning can re-
present the world as a hierarchy of features, for example: Pixels →
Edges or blobs → Parts of Objects → Objects → Collections of Objects
(Lee et al., 2009). Also, it can represent complex nonlinear factions due
to their deep architecture. And it has the ability to use unlabeled or
semi labeled data to achieve higher generalization.

One such deep learning method in particular, deep convolutional
neural networks (DCNN), has recently been shown to be the most
successful algorithm for image recognition in the field compared to
deep Boltzmann machines, convolutional deep belief networks (Lee
et al., 2009), and deep auto encoders (Kuang et al., 2014). Due to the
success of DCNN in identification, many researchers have started to use
DCNN in detection. The R-CNN (Regions with CNN features) (Girshick
et al., 2014) algorithm combined DCNN and semantic segmentation to
achieve state of the art results in detection.

Most of this research on deep learning, though, has been carried out
using internet image databases, such as the PASCAL Visual Object
Classes (VOC) Challenge (Everingham et al., 2010), IMAGENET Large
Scale Visual Recognition Challenge 2012 (ILSVRC2012) (Russakovsky
et al., 2014), Label me (Russell et al., 2007). These non-agricultural
image databases contain images taken under a wide variety of situa-
tions and sources. More recently, Sa et al. (2016) studied a fruit de-
tection system using deep neural networks. They used RGB and NIR
images which they obtained themselves. They used sweet pepper and
rock melon at different ripeness levels. Even though they used straw-
berry images those images were downloaded from the internet. De-
tection of strawberry classes (mature and immature) in known condi-
tions, such as illumination, distance from camera, using deep learning
remains unexplored at this point.

Many studies related to strawberry harvesting robots are being
carried out in Japan, such as a machine vision algorithm for robots to
harvest strawberries in tabletop culture greenhouses (Rajendra, 2008),
and field operation of a movable strawberry-harvesting robot using a
travelling platform (Hayashi et al., 2014). Our lab is also currently
developing a strawberry harvesting drone. So, as our model fruit for this
generic algorithm model we chose strawberry.

In strawberry field operations, many kinds of object classes (Mature,
Immature, Flowers etc.) need to be detected in order to optimize field
efficiency, an area of research yet to be explored for strawberry.
Moreover, localization accuracy is important for robotics applications
such as harvesting. So, in this initial study the behavior of a deep
learning algorithm to detect strawberries using three classes (Mature,
Immature and Background) was undertaken under known conditions.
We selected mature and immature strawberry as our objects because for

harvesting robots it is important to distinguish between these two
classes clearly and, also for operations, such as pruning and yield es-
timation detection of immature strawberries from the background is
important. We adopted the structure of appropriate deep learning
method (R-CNN with only DCNN) for immature and mature strawberry
detection and analyzed the results of detection.

Our objective was to train and evaluate R-CNN: by its training be-
havior, classification accuracy, localization accuracy and the errors in
detection of mature and immature fruit.

2. Materials and methodology

2.1. Materials and conditions

Pictures of strawberry were taken at a greenhouse near Matsuyama,
Japan (Fig. 1(a)), from Feb. 04th to Feb. 06th 2015. The Akai Shizuku
strawberry variety was used in the experiments. Average weight for this
variety was 16.1 g/fruit, which is almost the same as the Amaotome or
Benihoppe varieties, but this variety has smaller leaves, a short plant
height compared to the above two varieties, its shape is uniform, and it
has a good appearance (Matsuzawa et al., 2015). Because of these fa-
vorable characteristics we used the Akai Shizuku variety for our ex-
periment. A total of 421 images were captured. Out of these 421
images, 48 images were removed uniformly (every 9th image until 48)
for use in other experiments. Thus, we were left with 373 images. These
images were used in the training and testing. From the 373 images, 551
mature and 923 immature fruits were identified and used in this ex-
periment. The images were captured by a Nikon COOLPX S6500
camera. The camera was placed approximately 20 cm from the table of
the strawberry (Fig. 1(b)). It was important to get as much variation in
the images as possible. To reduce redundancy in the training data for
this task, a lower ISO was selected. The camera had an original ISO
range of 125–3200. The white balance of the camera was set using a
standard whiteboard. The focal length of the camera varied from 4.5 to
54.0 mm and the f-number from 3.1 to 6.5; as the camera automatically
selected the appropriate focal length and f-number within these ranges.

The camera was set to ISO 125, to get the lowest gain as possible so
that the natural illumination conditions were not altered and noise was
also reduced. The images were captured at a resolution of 4608×3456
pixel. Images were saved using the JPG format and resized to
500× 375 to reduce computational burden. Each fruit was marked
with a rectangle. The criteria of marking will be described in section
2.2.2. After resizing images, Table 1 shows the mean pixel sizes of the
marked rectangles.

Light conditions were recorded using a Minolta CL-200A chroma
meter, color temperature and illumination data was taken close to the

Fig. 1. (a) Greenhouse view (b) Capturing images.

Table 1
Pixel sizes of marked rectangles.

Class Mean
height

Mean
width

Standard deviation
of height

Standard deviation
of width

Mature 76.91 60.38 14.10 12.03
Immature 57.14 46.56 14.54 11.89
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