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We show that all nonnegative solutions of the critical semilin-
ear elliptic equation involving the regional fractional Lapla-
cian are locally universally bounded. This strongly contrasts 
with the standard fractional Laplacian case. Secondly, we con-
sider the fractional critical elliptic equations with nonnegative 
potentials. We prove compactness of solutions provided the 
potentials only have non-degenerate zeros. Corresponding to 
Schoen’s Weyl tensor vanishing conjecture for the Yamabe 
equation on manifolds, we establish a Laplacian vanishing rate 
of the potentials at blow-up points of solutions.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Let Ω be an open subset of Rn, n ≥ 2. The regional fractional Laplace operator is 
defined as
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(−ΔΩ)σu(x) := P.V.cn,σ
∫
Ω

u(x) − u(y)
|x− y|n+2σ dy for u ∈ C2(Ω),

where 0 < σ < 1 is a parameter, cn,σ = 22σσΓ(n+2σ
2 )

π
n
2 Γ(1−σ)

. The regional fractional Laplacian 

arises, for instance, from the Feller generator of the reflected symmetric stable process, 
see Bogdan–Burdzy–Chen [3], Chen–Kumagai [12], Guan–Ma [24], Guan [23], Mou–Yi 
[38] and many others. Here we are interested in universal boundness of positive solutions 
to nonlinear Poisson equation involving the regional fractional Laplacian. Making use of 
the standard blow-up argument of Gidas–Spruck [19] and the Liouville theorem, one can 
show that all nonnegative solutions of the equation (−ΔΩ)σu(x) = up with 1 < p < n+2σ

n−2σ
are locally universally bounded. In view of the fractional Sobolev inequality, for p in that 
range we say the equation is subcritical. In contrast, the critical equation (p = n+2σ

n−2σ ) 
has blow-up solutions when Ω = R

n. See Jin–Li–Xiong [27,28] and references therein for 
more discussions.

However, if Ω has nontrivial complement, we have

Theorem 1.1. Suppose that Ω is an open subset of Rn and the measure of Rn \ Ω is 
non-zero. Without loss of generality, suppose that the unit ball B1 ⊂ Ω. Let u ∈ C2(Ω)
be a nonnegative solution of

(−ΔΩ)σu = u
n+2σ
n−2σ in B1. (1)

If n ≥ 4σ, then

‖u‖C2(B1/2) ≤ C(n, σ,Ω),

where C(n, σ, Ω) > 0 is a constant depending only on n, σ, Ω.

Theorem 1.1 is of nonlocal nature and fails when σ = 1. Since no condition is as-
sumed on solutions in the complement of B1, there exist infinitely many solutions of 
(1). Note that (1) is the Euler–Lagrange equation of the fractional Sobolev inequality in 
Ω. Recently, Frank–Jin–Xiong [18] showed that the best constants of fractional Sobolev 
inequality depend on domains and can be achieved in many cases, which is different from 
the classical Sobolev inequalities in domains.

For every smooth bounded function u defined in Ω, by extending u to zero outside Ω
we see that

(−ΔΩ)σu(x) = (−Δ)σu(x) −AΩ(x)u(x) for x ∈ Ω, (2)

where (−Δ)σ := (−ΔRn)σ is the standard fractional Laplacian,

AΩ(x) := cn,σ

∫
Rn\Ω

1
|x− y|n+2σ dy. (3)
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