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We improve on previous upper bounds for the qth norm of 
the partial sums of the Riemann zeta function on the half line 
when 0 < q � 1. In particular, we show that the 1-norm is 
bounded above by (logN)1/4(log logN)1/4.
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1. Introduction and statement of results

The Lq norm of a Dirichlet polynomial F (s) =
∑

n�N a(n)n−s is defined as

‖F‖qq = lim
T→∞

1
T

T∫
0

|F (it)|qdt

for 0 < q < ∞. In this note we are interested in the norms of the Dirichlet polynomial
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f(s) =
∑
n�N

1
n1/2+s

.

The norms of this function share similarities with moments of the Riemann zeta function 
on the half-line, being sometimes referred to as pseudomoments of the Riemann zeta 
function [1,3]. In the paper [3], Conrey and Gamburd showed that for even k ∈ N

‖f‖k ∼ ck(logN)k/4 (1)

as N → ∞ for a specific constant ck. This of course bears a strong resemblance to the 
Keating–Snaith conjecture for the Riemann zeta function [11] which states that

(
1
T

T∫
0

|ζ(1
2 + it)|kdt

)1/k

∼ Ck(log T )k/4, k > −1

as T → ∞ where Ck is some specific constant (slightly different from ck). As is well 
known, Keating and Snaith based their conjecture on a formula for the average of the 
characteristic polynomial over the unitary group. Interestingly, Conrey and Gamburd’s 
proof of (1) exhibits a rigorous connection with random matrix theory.

For the continuous case 0 < q < ∞, the norms of f were investigated by Bondarenko, 
the author, and Seip in [2]. It was shown that when q > 1, we have the same order of 
magnitude as Conrey and Gamburd’s result i.e.

‖f‖q � (logN)q/4, q > 1 (2)

and that the lower bound here holds for all q > 0, that is

‖f‖q � (logN)q/4, q > 0.

The situation regarding upper bounds for q � 1 is less satisfactory and somewhat 
more interesting. Here, the results of [2] gave

‖f‖q 	
{

(logN)1/4 log logN q = 1
(logN)1/4 q < 1.

(3)

The proof of these upper bounds relied on estimates for the norm of the partial sum 
operator SN which is defined by

SN

( ∞∑
n=1

a(n)n−s

)
=

∑
n�N

a(n)n−s.

On applying a generalisation of M. Riesz’ Theorem due to Helson [8], it can be shown 
that for Dirichlet series F (s) in H q we have
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