Journal of Functional Analysis ••• (••••) •••-•••

Contents lists available at ScienceDirect

Journal of Functional Analysis

www.elsevier.com/locate/jfa

Upper bounds for L^q norms of Dirichlet polynomials with small q

Winston Heap ¹

Department of Mathematics, University College London, 25 Gordon Street, London WC1H, United Kingdom of Great Britain and Northern Ireland

ARTICLE INFO

Article history: Received 26 October 2017 Accepted 7 May 2018 Available online xxxx Communicated by K. Seip

Keywords:
Dirichlet polynomial
Norms
Riemann zeta function
Moments

ABSTRACT

We improve on previous upper bounds for the qth norm of the partial sums of the Riemann zeta function on the half line when $0 < q \le 1$. In particular, we show that the 1-norm is bounded above by $(\log N)^{1/4}(\log \log N)^{1/4}$.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction and statement of results

The L^q norm of a Dirichlet polynomial $F(s) = \sum_{n \leq N} a(n) n^{-s}$ is defined as

$$||F||_q^q = \lim_{T \to \infty} \frac{1}{T} \int_0^T |F(it)|^q dt$$

for $0 < q < \infty$. In this note we are interested in the norms of the Dirichlet polynomial

https://doi.org/10.1016/j.jfa.2018.05.004

0022-1236/© 2018 Elsevier Inc. All rights reserved.

E-mail address: winstonheap@gmail.com.

Research supported by European Research Council grant no. 670239.

W. Heap / Journal of Functional Analysis ••• (••••) •••-•••

$$f(s) = \sum_{n \leqslant N} \frac{1}{n^{1/2+s}}.$$

The norms of this function share similarities with moments of the Riemann zeta function on the half-line, being sometimes referred to as pseudomoments of the Riemann zeta function [1,3]. In the paper [3], Conrey and Gamburd showed that for even $k \in \mathbb{N}$

$$||f||_k \sim c_k (\log N)^{k/4} \tag{1}$$

as $N \to \infty$ for a specific constant c_k . This of course bears a strong resemblance to the Keating-Snaith conjecture for the Riemann zeta function [11] which states that

$$\left(\frac{1}{T}\int_{0}^{T}|\zeta(\frac{1}{2}+it)|^{k}dt\right)^{1/k} \sim C_{k}(\log T)^{k/4}, \qquad k > -1$$

as $T \to \infty$ where C_k is some specific constant (slightly different from c_k). As is well known, Keating and Snaith based their conjecture on a formula for the average of the characteristic polynomial over the unitary group. Interestingly, Conrey and Gamburd's proof of (1) exhibits a rigorous connection with random matrix theory.

For the continuous case $0 < q < \infty$, the norms of f were investigated by Bondarenko, the author, and Seip in [2]. It was shown that when q > 1, we have the same order of magnitude as Conrey and Gamburd's result i.e.

$$||f||_q \asymp (\log N)^{q/4}, \qquad q > 1 \tag{2}$$

and that the lower bound here holds for all q > 0, that is

$$||f||_q \gg (\log N)^{q/4}, \qquad q > 0.$$

The situation regarding upper bounds for $q \leq 1$ is less satisfactory and somewhat more interesting. Here, the results of [2] gave

$$||f||_q \ll \begin{cases} (\log N)^{1/4} \log \log N & q = 1\\ (\log N)^{1/4} & q < 1. \end{cases}$$
 (3)

The proof of these upper bounds relied on estimates for the norm of the partial sum operator S_N which is defined by

$$S_N\left(\sum_{n=1}^{\infty} a(n)n^{-s}\right) = \sum_{n \leqslant N} a(n)n^{-s}.$$

On applying a generalisation of M. Riesz' Theorem due to Helson [8], it can be shown that for Dirichlet series F(s) in \mathcal{H}^q we have

2

Download English Version:

https://daneshyari.com/en/article/8959475

Download Persian Version:

https://daneshyari.com/article/8959475

<u>Daneshyari.com</u>