ELSEVIER

Convexity and star-shapedness of matricial range

Pan-Shun Lau ${ }^{\text {a,* }}$, Chi-Kwong Li ${ }^{\text {b }}$, Yiu-Tung Poon ${ }^{\text {c }}$, Nung-Sing Sze ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong
${ }^{\text {b }}$ Department of Mathematics, College of William छ Mary, Williamsburg, VA 23185, United States of America
${ }^{\text {c }}$ Department of Mathematics, Iowa State University, Ames, IA 50011, United States of America

A R T I C L E I N F O

Article history:

Received 31 October 2017
Accepted 23 March 2018
Available online 4 April 2018
Communicated by K. Seip
Dedicated to Professor Yik-Hoi
Au-Yeung

MSC:

47A12
47A13
47A55
15A60

Keywords:
Joint matricial range
Joint essential numerical range
Higher rank numerical range
Bounded linear operators

A B S T R A C T

Let $\mathbf{A}=\left(A_{1}, \ldots, A_{m}\right)$ be an m-tuple of bounded linear operators acting on a Hilbert space \mathcal{H}. Their joint (p, q)-matricial range $\Lambda_{p, q}(\mathbf{A})$ is the collection of $\left(B_{1}, \ldots, B_{m}\right) \in \mathbf{M}_{q}^{m}$, where $I_{p} \otimes B_{j}$ is a compression of A_{j} on a $p q$-dimensional subspace. This definition covers various kinds of generalized numerical ranges for different values of p, q, m. In this paper, it is shown that $\Lambda_{p, q}(\mathbf{A})$ is star-shaped if the dimension of \mathcal{H} is sufficiently large. If $\operatorname{dim} \mathcal{H}$ is infinite, we extend the definition of $\Lambda_{p, q}(\mathbf{A})$ to $\Lambda_{\infty, q}(\mathbf{A})$ consisting of $\left(B_{1}, \ldots, B_{m}\right) \in \mathbf{M}_{q}^{m}$ such that $I_{\infty} \otimes B_{j}$ is a compression of A_{j} on a closed subspace of \mathcal{H}, and consider the joint essential (p, q)-matricial range

$$
\begin{aligned}
\Lambda_{p, q}^{e s s}(\mathbf{A})= & \bigcap\left\{\mathbf{c l}\left(\Lambda_{p, q}\left(A_{1}+F_{1}, \ldots, A_{m}+F_{m}\right)\right):\right. \\
& \left.F_{1}, \ldots, F_{m} \text { are compact operators }\right\} .
\end{aligned}
$$

Both sets are shown to be convex, and the latter one is always non-empty and compact.
© 2018 Published by Elsevier Inc.

[^0]
1. Introduction

Let $\mathcal{B}(\mathcal{H})$ be the algebra of bounded linear operators acting on a complex Hilbert space \mathcal{H}. If \mathcal{H} has dimension $n<\infty$, we identify $\mathcal{B}(\mathcal{H})$ with \mathbf{M}_{n}, the space of $n \times n$ complex matrices. The numerical range of $A \in \mathcal{B}(\mathcal{H})$ is defined and denoted by

$$
W(A)=\{\langle A x, x\rangle: x \in \mathcal{H},\|x\|=1\} .
$$

It is a useful concept for studying matrices and operators; see [10,13]. The ToeplitzHausdorff Theorem asserts that this set is always convex [12,23], i.e. $t w_{1}+(1-t) w_{2} \in$ $W(A)$ for all $w_{1}, w_{2} \in W(A)$ and $0 \leq t \leq 1$. As shown by many researchers, there are interesting interplay between the geometrical properties of the numerical ranges and the algebraic and analytic properties of the operators; for example; see [1,10,11,13]. Motivated by problems from theoretical and applied areas, researchers have considered different generalizations of the numerical range, and extended the results on the classical numerical range to the generalized numerical ranges. We mention a few of them related to our study in the following.

Let \mathcal{V}_{q} denote the set of operators $X: \mathcal{K} \rightarrow \mathcal{H}$ for some q-dimensional subspace \mathcal{K} of \mathcal{H} such that $X^{*} X=I_{\mathcal{K}}$. To study the compressions of $A \in \mathcal{B}(\mathcal{H})$ on a subspace of \mathcal{H}, researchers consider the q-matricial range defined by

$$
W(q: A)=\left\{X^{*} A X: X \in \mathcal{V}_{q}\right\} \subseteq \mathbf{M}_{q}
$$

One may see the basic references [19,22,24] and the excellent survey [9] on the topic. We remark that $W(q: A)$ is called spatial matricial range in [9].

In the study of joint behavior of several operators in $\mathcal{B}(\mathcal{H})$, researchers consider the joint numerical range of an m-tuple $\mathbf{A}=\left(A_{1}, \ldots, A_{m}\right) \in \mathcal{B}(\mathcal{H})^{m}$,

$$
W(\mathbf{A})=\left\{\left(\left\langle A_{1} x, x\right\rangle, \ldots,\left\langle A_{m} x, x\right\rangle\right): x \in \mathcal{H},\|x\|=1\right\}
$$

In the study of control theory, this is known as the m-multiform numerical range, and the convexity of the sets is useful; see $[3,8,14]$ and their references.

In connection to the study of quantum error correction, researchers study the (p, q)-matricial range $\Lambda_{p, q}(A)$ of $A \in \mathcal{B}(\mathcal{H})$ defined as follows. Let p, q be positive integers with $p q \leq \operatorname{dim} \mathcal{H}$. Then

$$
\Lambda_{p, q}(A)=\left\{B \in \mathbf{M}_{q}: X^{*} A X=I_{p} \otimes B \text { for some } X \in \mathcal{V}_{p q}\right\}
$$

When $q=1$, the definition reduces to the rank p-numerical range of A defined by

$$
\Lambda_{p}(A)=\left\{b: X^{*} A X=b I_{p} \text { for some } X \in \mathcal{V}_{p}\right\}
$$

https://daneshyari.com/en/article/8959476

Download Persian Version:

https://daneshyari.com/article/8959476

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: panshun.lau@polyu.edu.hk (P.-S. Lau), ckli@math.wm.edu (C.-K. Li), ytpoon@iastate.edu (Y.-T. Poon), raymond.sze@polyu.edu.hk (N.-S. Sze).

