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We show

∫
E∩θ+ f(x)dx∫

E
f(x)dx

≥
(

kγ + 1
(n + 1)γ + 1

) kγ+1
γ

for all k-dimensional subspaces E ⊂ R
n, θ ∈ E ∩ Sn−1, and 

all γ-concave functions f : R
n → [0, ∞) with γ > 0, 0 <∫

Rn f(x) dx < ∞, and 
∫
Rn xf(x) dx at the origin o ∈ R

n. Here, 
θ+ := {x : 〈x, θ〉 ≥ 0}. As a consequence of this result, we 
get the following generalization of Grünbaum’s inequality:

volk(K ∩ E ∩ θ+)
volk(K ∩ E)

≥
(

k

n + 1

)k

for all convex bodies K ⊂ R
n with centroid at the origin, 

k-dimensional subspaces E ⊂ R
n, and θ ∈ E ∩ Sn−1. The 

lower bounds in both of our inequalities are the best possible, 
and we discuss the equality conditions.
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1. Introduction

An elegant inequality of Grünbaum [5] gives a lower bound for the volume of that 
portion of a convex body lying in a halfspace which slices the convex body through 
its centroid. Let K be a convex body in Rn; that is, a convex and compact set with 
non-empty interior. Assume that the centroid of K,

g(K) := 1
voln(K)

∫
K

x dx ∈ int(K),

is at the origin. Given a unit vector θ ∈ Sn−1, we define θ+ := {x : 〈x, θ〉 ≥ 0}. 
Specifically, Grünbaum’s inequality states that

voln(K ∩ θ+)
voln(K) ≥

(
n

n + 1

)n

. (1)

There is equality when, for example, K is the cone

conv
(

−1
n + 1θ + Bn−1

2 ,
n

n + 1θ
)

and Bn−1
2 is the unit ball in θ⊥. This volume inequality was independently proven in [7].

Compare Grünbaum’s inequality with the following long known lower bound for the 
distance between the centroid g(K) = o and a supporting hyperplane of K. The support 
function of K is defined by hK(x) = maxy∈K〈x, y〉 for x ∈ R

n. Evaluated at the unit 
vector θ, hK(θ) gives the distance from the origin to the supporting hyperplane of K in 
the direction θ. Now, the aforementioned inequality is

hK(θ)
hK(−θ) + hK(θ) ≥ 1

n + 1 . (2)

There is equality when, for example, K is the cone

conv
(

−n

n + 1θ + Bn−1
2 ,

1
n + 1θ

)
.

Refer to pages 57–58 of [1] for a discussion of (2).
A generalization of Grünbaum’s inequality was recently established in [8] for projec-

tions of a convex body. Let E be a k-dimensional subspace of Rn, 1 ≤ k ≤ n, and let K|E
denote the orthogonal projection of K onto E. “Grünbaum’s inequality for projections” 
states

volk
(
(K|E) ∩ θ+

)
volk(K|E) ≥

(
k

n + 1

)k

. (3)
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