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52A20 for all k-dimensional subspaces E C R, § € EN S™ ! and
52A38 all y-concave functions f : R® — [0,00) with v > 0, 0 <
52A40 Jgn f(@) dz < 00, and [, zf(x) dx at the origin o € R™. Here,

0T := {z : (x,0) > 0}. As a consequence of this result, we
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for all convex bodies K C R™ with centroid at the origin,
k-dimensional subspaces E C R™, and § € EN S*!. The
lower bounds in both of our inequalities are the best possible,
and we discuss the equality conditions.
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1. Introduction

An elegant inequality of Griinbaum [5] gives a lower bound for the volume of that
portion of a convex body lying in a halfspace which slices the convex body through
its centroid. Let K be a convexr body in R™; that is, a convex and compact set with
non-empty interior. Assume that the centroid of K,

g(K) = m/xdx € int(K),
K

is at the origin. Given a unit vector § € S"~! we define 6+ := {z : (x,0) > 0}.
Specifically, Griinbaum’s inequality states that
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There is equality when, for example, K is the cone
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and Bgfl is the unit ball in #+. This volume inequality was independently proven in [7].
Compare Grinbaum’s inequality with the following long known lower bound for the
distance between the centroid g(K) = o and a supporting hyperplane of K. The support
function of K is defined by hi(x) = maxyck (z,y) for x € R". Evaluated at the unit
vector 0, hi(0) gives the distance from the origin to the supporting hyperplane of K in

the direction 6. Now, the aforementioned inequality is
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There is equality when, for example, K is the cone
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Refer to pages 57-58 of [1] for a discussion of (2).

A generalization of Griinbaum’s inequality was recently established in [8] for projec-
tions of a convex body. Let E be a k-dimensional subspace of R”, 1 < k < n, and let K|F
denote the orthogonal projection of K onto F. “Griinbaum’s inequality for projections”
states

vol ((K|E) no+) >< L )k.

voli (K| E) n+1
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