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Abstract

In this paper, we consider the averaging principle for one dimensional stochastic Burgers equation with 
slow and fast time-scales. Under some suitable conditions, we show that the slow component strongly 
converges to the solution of the corresponding averaged equation. Meanwhile, when there is no noise in the 
slow component equation, we also prove that the slow component weakly converges to the solution of the 
corresponding averaged equation with the order of convergence 1 − r , for any 0 < r < 1.
© 2018 Published by Elsevier Inc.
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1. Introduction

Many multiscale problems arise from material sciences, chemistry, fluids dynamics, biology, 
ecology, climate dynamics and other application areas, see, e.g., [1,12,19,23,27,29,36] and ref-
erences therein. E and Engquist [12] pointed out “Problems in these areas are often multiphysics 
in nature; namely, the processes at different scales are governed by physical laws of different 
character: for example, quantum mechanics at one scale and classical mechanics at another.” 
For instance, dynamics of chemical reaction networks often take place on notably different times 
scales, from the order of nanoseconds (10−9 s) to the order of several days, the use of two-time or 
multi-time scales is common. Another example with multiple time scales is that of protein fold-
ing. While the time scale for the vibration of the covalent bonds is on the order of femtoseconds 
(10−15 s), folding time for the proteins may very well be on the order of seconds.

Many two-time scale/slow-fast systems can be formally written as
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(1.1)

where W 1
t , W 2

t are independent Wiener processes, and the small parameter ε quantifies the ratio 
of the Xε and Y ε time scales. For many practical problems, it is of interest to study the behav-
ior of the system (1.1) for ε << 1, and how dynamics of this system depends on ε as ε → 0. 
However, since ε << 1, it is often very difficult to directly calculate Xε, and systems of this 
type are problematic for computer simulations. The averaging principle can be applied to solve 
these problems of this type. Roughly speaking, if the dynamics for Y ε with Xε = x fixed has an 
invariant probability measure μx(dy) and the following integrals exist

b̄1(x) :=
∫

b1(x, y)μx(dy), σ̄1(x) :=
∫

σ1(x, y)μx(dy),

then under appropriate assumptions on all coefficients in the system (1.1), the effective dynamics 
for Xε in the limit of ε → 0 is a stochastic differential equation:

dX̄t = b̄1(X̄t )dt + σ̄1(X̄t )dW 1
t , X̄0 = x.

The theory of averaging principle has a long history and rich results. Bogoliubov and 
Mitropolsky [2] first studied the averaging principle for the deterministic systems. Later on, 
the theory of averaging principle for stochastic differential equations was firstly established by 
Khasminskii [21]. Since then, averaging principle for stochastic reaction–diffusion systems has 
become an active research area which attracted much attention. For example, Cerrai and Freidlin 
[5] proved the averaging principle for a general class of stochastic reaction–diffusion systems, 
which extended the classical Khasminskii-type averaging principle for finite dimensional sys-
tems to infinite dimensional systems. Recently, based on the averaging principle, the fast flow 
asymptotics for a stochastic reaction–diffusion–advection equation are obtained by Cerrai and 
Freidlin [6]. We refer to [3,4,13,15–18,22,24,33–35] and references therein for more interesting 
results on this topic.

To the best of our knowledge, there are rarely studies to deal with highly nonlinear term on 
this topic. In this paper, we are interested in studying the averaging principle for one dimensional 
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