A class of planar vector fields with homogeneous singular points: Solvability and boundary value problems

C. Campana ${ }^{\text {a, }, 1}$, P.L. Dattori da Silva ${ }^{\mathrm{b}, *, 2}$, A. Meziani ${ }^{\mathrm{c}}$
${ }^{\text {a }}$ Departamento de Matemática, Universidade Federal de São Carlos, Caixa Postal 676, São Carlos, SP, 13565-905, Brazil
${ }^{\text {b }}$ Departamento de Matemática, Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, Caixa Postal 668, São Carlos, SP, 13560-970, Brazil
${ }^{\text {c }}$ Department of Mathematics, Florida International University, Miami, FL, 33199, USA

Received 12 September 2017; revised 27 June 2018

Abstract

This paper deals with the solvability of planar complex vector fields with homogeneous degeneracies. Hölder continuous solutions are obtained via a Cauchy type integral operator associated to the vector field. An associated boundary value problem of Riemann-Hilbert type is also considered. © 2018 Elsevier Inc. All rights reserved.

MSC: primary 35A01, 35F05; secondary 35C15, 35J70
Keywords: Global solvability; Homogeneous singularity; Vector fields; Boundary value problems

[^0]
1. Introduction

This paper deals with the solvability of complex vector fields in two variables with homogeneous degeneracies. This work is an extension of [8] and is also motivated by the recent results contained in [3], [4], and [5].

Let $L=A \partial_{x}+B \partial_{y}$ be a vector field in \mathbb{R}^{2}, where A and B are \mathbb{C}-valued smooth functions in $\mathbb{R}^{2} \backslash\{0\}$ and homogeneous of degree $\lambda \in \mathbb{C}$ with $\mathfrak{R} \lambda>0$. Various aspects of the solvability of the equation $L u=f$ and associated boundary value problems are considered in [8], when f is smooth or real analytic. The focus here is to consider more general function spaces for the function f. These spaces depend on the homogeneity degree of L and on the degrees of degeneracies of L along the characteristic lines. The main ingredient used is in understanding the properties of an associated integral operator

$$
T_{Z} f(x, y)=\frac{1}{2 \pi i} \int_{\Omega} \frac{f(\xi, \eta)}{Z(\xi, \eta)-Z(x, y)} d \xi d \eta
$$

where Z is a first integral of L.
The organization of this paper is as follows. In section 2, we introduce the class of vector fields and construct a first integral in polar coordinates for an associated vector field L_{0}. Technical lemmas, crucial for the study of $T_{Z} f$ are proved in section 3. In section 4, we define function spaces $\mathcal{F}(\Omega)$ in a domain $\Omega \subset \mathbb{R} \times \mathbb{S}^{1}$ that depend on the homogeneity degree and degeneracy degrees of L_{0}. Then using the Lemmas of section 3, the main properties of T_{Z} are proved in Theorems 4.1, 4.2, and 4.3. The Riemann-Hilbert boundary value problem $L_{0} u=f$ in Ω and $\mathfrak{R}(\bar{\Lambda} u)=\varphi$ on $\partial \Omega$ is considered in section 5. We prove in Theorem 5.3 that if $f \in \mathcal{F}(\Omega), \Lambda$ and φ are Hölder continuous on $\partial \Omega$ with $|\Lambda|=1$ and φ an \mathbb{R}-valued function, then the problem has a Hölder continuous solution, provided that the index of Λ is nonnegative. In the last section, we interpret the results of sections 4 and 5 for the initial vector field L with a singular point at $0 \in \mathbb{R}^{2}$.

2. A class of vector fields

Let

$$
\begin{equation*}
L=A(x, y) \partial_{x}+B(x, y) \partial_{y} \tag{2.1}
\end{equation*}
$$

be a complex vector field in \mathbb{R}^{2}, where $A, B \in C^{\infty}\left(\mathbb{R}^{2} \backslash\{0\}\right)$ are homogeneous functions of degree $\lambda \in \mathbb{C}$ with $\Re(\lambda)>0$. Hence, for every $(x, y) \in \mathbb{R}^{2}$ and for every $t \in \mathbb{R}^{+}$,

$$
A(t x, t y)=t^{\lambda} A(x, y) \quad \text { and } \quad B(t x, t y)=t^{\lambda} B(x, y)
$$

The conjugate of L is the vector field

$$
\bar{L}=\overline{A(x, y)} \partial_{x}+\overline{B(x, y)} \partial_{y},
$$

where \bar{A} and \bar{B} are the complex conjugates of A and B.

https://daneshyari.com/en/article/8959517

Download Persian Version:

https://daneshyari.com/article/8959517

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: camilo.mat.ufes@gmail.com (C. Campana), dattori@icmc.usp.br (P.L. Dattori da Silva), meziani@fiu.edu (A. Meziani).
 ${ }^{1}$ Supported by FAPESP (grants 2013/08452-8 and 2016/21969-8).
 ${ }^{2}$ Supported in part by CNPq (grants 478542/2013-5 and 306037/2015-7) and FAPESP (grants 2012/03168-7 and 2015/20815-4).

