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Abstract

Planar wave trains are traveling wave solutions whose wave profiles are periodic in one spatial direction
and constant in the transverse direction. In this paper, we investigate the stability of planar wave trains in
reaction—diffusion systems. We establish nonlinear diffusive stability against perturbations that are bounded
along a line in R2 and decay exponentially in the distance from this line. Our analysis is the first to treat
spatially nonlocalized perturbations that do not originate from a phase modulation. We also consider pertur-
bations that are fully localized and establish nonlinear stability with better decay rates, suggesting a trade-off
between spatial localization of perturbations and temporal decay rate. Our stability analysis utilizes point-
wise estimates to exploit the spatial structure of the perturbations. The nonlocalization of perturbations
prevents the use of damping estimates in the nonlinear iteration scheme; instead, we track the perturbed
solution in two different coordinate systems.
© 2018 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we investigate the stability of spatially periodic planar traveling waves. Consider
a planar reaction—diffusion system of the form

ur = D(uyy +uyy) + fu), (x,y)€R? >0, ueR", (1.1)

where n € N, D € R™" is a symmetric, positive-definite matrix, and f: R” — R” is a
C2-smooth nonlinearity. We are interested in planar traveling-wave solutions to (1.1) of the form
u(x,y,t) =uoso(kx — wt), where the profile u,(¢) is periodic in ¢ with period 1, k € R denotes
the spatial wave number, and w € R is the temporal frequency of the traveling wave. From now
on, we use the term wave train to refer to spatially-periodic traveling waves. We note that the
terms “rolls” and “stripes” are also used in literature to refer to planar wave trains.

Our goal is to determine whether, and in what sense, the planar wave train u(x,y,t) =
Uxo(kx — wt) is stable under perturbations of the initial condition u(x, y, 0) = uxo(kx). Part
of our motivation stems from the case of planar spiral waves that resemble planar wave trains in
the far field: understanding the stability of wave-train solutions to (1.1) is a first step towards any
nonlinear stability analysis of planar spiral waves.

Before discussing the nonlinear stability of wave trains for the planar system (1.1), we re-
view the relevant results for the spatially one-dimensional case. Note that the function u(x, ) =
Uso(kx — wt) is also a wave-train solution to the one-dimensional version

us = Duyy + f(u), xeR, t>0, uekR’ (1.2)

of (1.1). Throughout, we will assume that the wave train is spectrally stable and refer to §2.1 for
details on what this assumption entails. We then consider initial conditions of the form

u(x,0) =ucolkx + @o(x)) 4+ vo(x), 0o(x) = @t as x — +o0, (1.3)

where the perturbation vy is sufficiently small in an appropriate function space, so that we change
the phase, but not the wave number, of the wave train at time # = 0. Let #(x,t) denote the
associated solution to (1.2): we may then ask whether #(x, ) converges in an appropriate sense
to U (kx — wt), or a translate, as time ¢ goes to infinity.

More generally, we can attempt to write the solution in the form

U(x,t) =ueolkx + ¢(x, 1) — wt) 4+ terms that decay at least pointwise in time. (1.4)

For the case |¢p4+ — ¢_| < 1, it was shown in [23] that (1.4) holds for a function ¢(x, ¢) that has
an asymptotically self-similar profile as t — oo: indeed, ¢ (x, t) converges to a moving Gaussian
if ¢+ = ¢_ and to a moving error function with amplitude ¢4 — @_ in the case where 0 <
o+ — ¢_| < 1. Similar results, though without the explicit asymptotics, were also shown in [9,
13-15,24] using different methods — see Remark 1.1 below for more details. The results in [9]
were complemented with explicit asymptotics in [10], recovering the results of [23] for the case
0 < |o4 — ¢—| < 1. The restriction that |¢+ — ¢_| is small was recently removed in [8]. We
emphasize that, although the initial phase off-set ¢g can be nonlocalized, the perturbation vy
in (1.3) has to be localized in all the aforementioned papers, that is, we need to assume that
vo(x) — O sufficiently rapidly as x — Fo00.
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