Available online at www.sciencedirect.com ### **ScienceDirect** J. Differential Equations ••• (•••) •••-•• Journal of Differential Equations www.elsevier.com/locate/jde # Homogenization of a nonlinear monotone problem with nonlinear Signorini boundary conditions in a domain with highly rough boundary Antonio Gaudiello a,*, Taras Mel'nyk b a DIEI, Università degli Studi di Cassino e del Lazio Meridionale, via G. Di Biasio 43, 03043 Cassino (FR), Italy b Department of Mathematical Physics, Faculty of Mechanics and Mathematics, National Taras Shevchenko University of Kyiv, 01033 Kyiv, Ukraine Received 16 April 2018 #### Abstract In this paper, we consider a domain $\Omega_{\varepsilon} \subset \mathbb{R}^N$, $N \geq 2$, with a very rough boundary depending on ε . For instance, if N=3 Ω_{ε} has the form of a brush with an ε -periodic distribution of thin cylindrical teeth with fixed height and a small diameter of order ε . In Ω_{ε} we consider a nonlinear monotone problem with nonlinear Signorini boundary conditions, depending on ε , on the lateral boundary of the teeth. We study the asymptotic behavior of this problem, as ε vanishes, i.e. when the number of thin attached cylinders increases unboundedly, while their cross sections tend to zero. We identify the limit problem which is a nonstandard homogenized problem. Namely, in the region filled up by the thin cylinders the limit problem is given by a variational inequality coupled to an algebraic system. MSC: 35B27; 35J60; 35R35 Keywords: Homogenization of rough boundaries; Nonlinear monotone problems; Nonlinear Signorini boundary conditions E-mail addresses: gaudiell@unina.it (A. Gaudiello), melnyk@imath.kiev.ua (T. Mel'nyk). https://doi.org/10.1016/j.jde.2018.07.002 0022-0396/© 2018 Elsevier Inc. All rights reserved. Please cite this article in press as: A. Gaudiello, T. Mel'nyk, Homogenization of a nonlinear monotone problem with nonlinear Signorini boundary conditions in a domain with highly rough boundary, J. Differential Equations (2018), https://doi.org/10.1016/j.jde.2018.07.002 ^{*} Corresponding author. A. Gaudiello, T. Mel'nyk / J. Differential Equations ••• (••••) •••-•• Fig. 1. Ω_{ε} . Fig. 2. Ω. #### 1. Introduction This paper is devoted to studying the asymptotic behavior, as ε vanishes, of a nonlinear monotone problem with nonlinear Signorini boundary conditions, depending on ε , in a domain $\Omega_{\varepsilon} \subset \mathbb{R}^N$, $N \geq 2$, whose boundary contains a very rough part depending on ε . The geometry of Ω_{ε} is rigorously introduced in Section 2. Roughly speaking, Ω_{ε} has the form of a brush in 3D (see Fig. 1) or the form of a comb in 2D. It is composed of two parts: a fixed box Ω^b and a "forest" Ω^a_{ε} of cylinders with fixed height and small cross section of diameter of order ε , ε -periodically distributed in the first N-1 directions on the upper basis of Ω^b . The upper boundary and the lateral boundary of these cylinders are denoted by Σ^a_{ε} and $\Sigma^{a,lat}_{\varepsilon}$, respectively. Here as well as in the whole of the present paper, the superscripts a,b, and lat refer to "above", "below", and "lateral", respectively. Moreover, Ω^a denotes the "smallest" box containing Ω^a_{ε} for every ε , Σ^a and Σ^0 its upper basis and its lower basis, respectively, and $\Omega = \Omega^a \cup \Sigma^0 \cup \Omega^b$ (see Fig. 2). Boundary-value problems in a domain with rough boundary arise in many fields of biology, physics and engineering sciences. For instance, for understanding the motion of ciliated mi- Please cite this article in press as: A. Gaudiello, T. Mel'nyk, Homogenization of a nonlinear monotone problem with nonlinear Signorini boundary conditions in a domain with highly rough boundary, J. Differential Equations (2018), https://doi.org/10.1016/j.jde.2018.07.002 2 ## Download English Version: # https://daneshyari.com/en/article/8959521 Download Persian Version: https://daneshyari.com/article/8959521 <u>Daneshyari.com</u>